shadPS4/src/shader_recompiler/ir/ir_emitter.cpp
Dmugetsu ddc05e8a5f
Some checks are pending
Build and Release / reuse (push) Waiting to run
Build and Release / clang-format (push) Waiting to run
Build and Release / get-info (push) Waiting to run
Build and Release / windows-sdl (push) Blocked by required conditions
Build and Release / linux-sdl (push) Blocked by required conditions
Build and Release / linux-qt (push) Blocked by required conditions
Build and Release / windows-qt (push) Blocked by required conditions
Build and Release / macos-sdl (push) Blocked by required conditions
Build and Release / macos-qt (push) Blocked by required conditions
Build and Release / linux-sdl-gcc (push) Blocked by required conditions
Build and Release / linux-qt-gcc (push) Blocked by required conditions
Build and Release / pre-release (push) Blocked by required conditions
Implementing DS_SUB_U32, DS_INC_U32, DS_DEC_U32. (#2797)
* Implementing DS_SUB_U32, DS_INC_U32, DS_DEC_U32, DS_WRITE_SRC2_B32, DS_WRITE_SRC2_B64.

* Added ir instructions for new opcodes.
Removing Write implementations.
Maping operation S_BFE_I32 as it was added in translate but wasnt pointing to anything.

* Suggestions
2025-04-16 17:56:27 -07:00

2025 lines
66 KiB
C++

// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <array>
#include <bit>
#include <source_location>
#include <boost/container/small_vector.hpp>
#include "common/assert.h"
#include "shader_recompiler/exception.h"
#include "shader_recompiler/ir/debug_print.h"
#include "shader_recompiler/ir/ir_emitter.h"
#include "shader_recompiler/ir/opcodes.h"
#include "shader_recompiler/ir/value.h"
namespace Shader::IR {
namespace {
[[noreturn]] void ThrowInvalidType(Type type,
std::source_location loc = std::source_location::current()) {
const std::string functionName = loc.function_name();
const int lineNumber = loc.line();
UNREACHABLE_MSG("Invalid type = {}, functionName = {}, line = {}", u32(type), functionName,
lineNumber);
}
} // Anonymous namespace
U1 IREmitter::Imm1(bool value) const {
return U1{Value{value}};
}
U8 IREmitter::Imm8(u8 value) const {
return U8{Value{value}};
}
U16 IREmitter::Imm16(u16 value) const {
return U16{Value{value}};
}
U32 IREmitter::Imm32(u32 value) const {
return U32{Value{value}};
}
U32 IREmitter::Imm32(s32 value) const {
return U32{Value{static_cast<u32>(value)}};
}
F32 IREmitter::Imm32(f32 value) const {
return F32{Value{value}};
}
U64 IREmitter::Imm64(u64 value) const {
return U64{Value{value}};
}
U64 IREmitter::Imm64(s64 value) const {
return U64{Value{static_cast<u64>(value)}};
}
F64 IREmitter::Imm64(f64 value) const {
return F64{Value{value}};
}
template <>
IR::U32 IREmitter::BitCast<IR::U32, IR::U1>(const IR::U1& value) {
return IR::U32{Select(value, Imm32(1), Imm32(0))};
}
template <>
IR::U32 IREmitter::BitCast<IR::U32, IR::F32>(const IR::F32& value) {
return Inst<IR::U32>(Opcode::BitCastU32F32, value);
}
template <>
IR::F32 IREmitter::BitCast<IR::F32, IR::U32>(const IR::U32& value) {
return Inst<IR::F32>(Opcode::BitCastF32U32, value);
}
template <>
IR::U16 IREmitter::BitCast<IR::U16, IR::F16>(const IR::F16& value) {
return Inst<IR::U16>(Opcode::BitCastU16F16, value);
}
template <>
IR::F16 IREmitter::BitCast<IR::F16, IR::U16>(const IR::U16& value) {
return Inst<IR::F16>(Opcode::BitCastF16U16, value);
}
template <>
IR::U64 IREmitter::BitCast<IR::U64, IR::F64>(const IR::F64& value) {
return Inst<IR::U64>(Opcode::BitCastU64F64, value);
}
template <>
IR::F64 IREmitter::BitCast<IR::F64, IR::U64>(const IR::U64& value) {
return Inst<IR::F64>(Opcode::BitCastF64U64, value);
}
U1 IREmitter::ConditionRef(const U1& value) {
return Inst<U1>(Opcode::ConditionRef, value);
}
void IREmitter::Reference(const Value& value) {
Inst(Opcode::Reference, value);
}
void IREmitter::PhiMove(IR::Inst& phi, const Value& value) {
Inst(Opcode::PhiMove, Value{&phi}, value);
}
void IREmitter::Prologue() {
Inst(Opcode::Prologue);
}
void IREmitter::Epilogue() {
Inst(Opcode::Epilogue);
}
void IREmitter::Discard() {
Inst(Opcode::Discard);
}
void IREmitter::Discard(const U1& cond) {
Inst(Opcode::DiscardCond, cond);
}
void IREmitter::Barrier() {
Inst(Opcode::Barrier);
}
void IREmitter::WorkgroupMemoryBarrier() {
Inst(Opcode::WorkgroupMemoryBarrier);
}
void IREmitter::DeviceMemoryBarrier() {
Inst(Opcode::DeviceMemoryBarrier);
}
U32 IREmitter::GetUserData(IR::ScalarReg reg) {
ASSERT(static_cast<u32>(reg) < IR::NumScalarRegs);
return Inst<U32>(Opcode::GetUserData, reg);
}
U1 IREmitter::GetThreadBitScalarReg(IR::ScalarReg reg) {
ASSERT(static_cast<u32>(reg) < IR::NumScalarRegs);
return Inst<U1>(Opcode::GetThreadBitScalarReg, reg);
}
void IREmitter::SetThreadBitScalarReg(IR::ScalarReg reg, const U1& value) {
ASSERT(static_cast<u32>(reg) < IR::NumScalarRegs);
Inst(Opcode::SetThreadBitScalarReg, reg, value);
}
template <>
U32 IREmitter::GetScalarReg(IR::ScalarReg reg) {
ASSERT(static_cast<u32>(reg) < IR::NumScalarRegs);
return Inst<U32>(Opcode::GetScalarRegister, reg);
}
template <>
F32 IREmitter::GetScalarReg(IR::ScalarReg reg) {
return BitCast<F32>(GetScalarReg<U32>(reg));
}
template <>
U32 IREmitter::GetVectorReg(IR::VectorReg reg) {
ASSERT(static_cast<u32>(reg) < IR::NumVectorRegs);
return Inst<U32>(Opcode::GetVectorRegister, reg);
}
template <>
F32 IREmitter::GetVectorReg(IR::VectorReg reg) {
return BitCast<F32>(GetVectorReg<U32>(reg));
}
void IREmitter::SetScalarReg(IR::ScalarReg reg, const U32F32& value) {
ASSERT(static_cast<u32>(reg) < IR::NumScalarRegs);
const U32 value_typed = value.Type() == Type::F32 ? BitCast<U32>(F32{value}) : U32{value};
Inst(Opcode::SetScalarRegister, reg, value_typed);
}
void IREmitter::SetVectorReg(IR::VectorReg reg, const U32F32& value) {
ASSERT(static_cast<u32>(reg) < IR::NumVectorRegs);
const U32 value_typed = value.Type() == Type::F32 ? BitCast<U32>(F32{value}) : U32{value};
Inst(Opcode::SetVectorRegister, reg, value_typed);
}
U1 IREmitter::GetGotoVariable(u32 id) {
return Inst<U1>(Opcode::GetGotoVariable, id);
}
U1 IREmitter::Condition(IR::Condition cond) {
switch (cond) {
case IR::Condition::False:
return Imm1(false);
case IR::Condition::True:
return Imm1(true);
case IR::Condition::Scc0:
return LogicalNot(GetScc());
case IR::Condition::Scc1:
return GetScc();
case IR::Condition::Vccz:
return LogicalNot(GetVcc());
case IR::Condition::Vccnz:
return GetVcc();
case IR::Condition::Execz:
return LogicalNot(GetExec());
case IR::Condition::Execnz:
return GetExec();
default:
throw NotImplementedException("");
}
}
void IREmitter::SetGotoVariable(u32 id, const U1& value) {
Inst(Opcode::SetGotoVariable, id, value);
}
U1 IREmitter::GetScc() {
return Inst<U1>(Opcode::GetScc);
}
U1 IREmitter::GetExec() {
return Inst<U1>(Opcode::GetExec);
}
U1 IREmitter::GetVcc() {
return Inst<U1>(Opcode::GetVcc);
}
U32 IREmitter::GetVccLo() {
return Inst<U32>(Opcode::GetVccLo);
}
U32 IREmitter::GetVccHi() {
return Inst<U32>(Opcode::GetVccHi);
}
U32 IREmitter::GetM0() {
return Inst<U32>(Opcode::GetM0);
}
void IREmitter::SetScc(const U1& value) {
Inst(Opcode::SetScc, value);
}
void IREmitter::SetExec(const U1& value) {
Inst(Opcode::SetExec, value);
}
void IREmitter::SetVcc(const U1& value) {
Inst(Opcode::SetVcc, value);
}
void IREmitter::SetSccLo(const U32& value) {
Inst(Opcode::SetSccLo, value);
}
void IREmitter::SetVccLo(const U32& value) {
Inst(Opcode::SetVccLo, value);
}
void IREmitter::SetVccHi(const U32& value) {
Inst(Opcode::SetVccHi, value);
}
void IREmitter::SetM0(const U32& value) {
Inst(Opcode::SetM0, value);
}
F32 IREmitter::GetAttribute(IR::Attribute attribute, u32 comp, IR::Value index) {
return Inst<F32>(Opcode::GetAttribute, attribute, Imm32(comp), index);
}
U32 IREmitter::GetAttributeU32(IR::Attribute attribute, u32 comp) {
return Inst<U32>(Opcode::GetAttributeU32, attribute, Imm32(comp));
}
void IREmitter::SetAttribute(IR::Attribute attribute, const F32& value, u32 comp) {
Inst(Opcode::SetAttribute, attribute, value, Imm32(comp));
}
F32 IREmitter::GetTessGenericAttribute(const U32& vertex_index, const U32& attr_index,
const U32& comp_index) {
return Inst<F32>(IR::Opcode::GetTessGenericAttribute, vertex_index, attr_index, comp_index);
}
void IREmitter::SetTcsGenericAttribute(const F32& value, const U32& attr_index,
const U32& comp_index) {
Inst(Opcode::SetTcsGenericAttribute, value, attr_index, comp_index);
}
F32 IREmitter::ReadTcsGenericOuputAttribute(const U32& vertex_index, const U32& attr_index,
const U32& comp_index) {
return Inst<F32>(IR::Opcode::ReadTcsGenericOuputAttribute, vertex_index, attr_index,
comp_index);
}
F32 IREmitter::GetPatch(Patch patch) {
return Inst<F32>(Opcode::GetPatch, patch);
}
void IREmitter::SetPatch(Patch patch, const F32& value) {
Inst(Opcode::SetPatch, patch, value);
}
Value IREmitter::LoadShared(int bit_size, bool is_signed, const U32& offset) {
switch (bit_size) {
case 32:
return Inst<U32>(Opcode::LoadSharedU32, offset);
case 64:
return Inst(Opcode::LoadSharedU64, offset);
default:
UNREACHABLE_MSG("Invalid bit size {}", bit_size);
}
}
void IREmitter::WriteShared(int bit_size, const Value& value, const U32& offset) {
switch (bit_size) {
case 32:
Inst(Opcode::WriteSharedU32, offset, value);
break;
case 64:
Inst(Opcode::WriteSharedU64, offset, value);
break;
default:
UNREACHABLE_MSG("Invalid bit size {}", bit_size);
}
}
U32F32 IREmitter::SharedAtomicIAdd(const U32& address, const U32F32& data) {
switch (data.Type()) {
case Type::U32:
return Inst<U32>(Opcode::SharedAtomicIAdd32, address, data);
default:
ThrowInvalidType(data.Type());
}
}
U32 IREmitter::SharedAtomicIMin(const U32& address, const U32& data, bool is_signed) {
return is_signed ? Inst<U32>(Opcode::SharedAtomicSMin32, address, data)
: Inst<U32>(Opcode::SharedAtomicUMin32, address, data);
}
U32 IREmitter::SharedAtomicIMax(const U32& address, const U32& data, bool is_signed) {
return is_signed ? Inst<U32>(Opcode::SharedAtomicSMax32, address, data)
: Inst<U32>(Opcode::SharedAtomicUMax32, address, data);
}
U32 IREmitter::SharedAtomicAnd(const U32& address, const U32& data) {
return Inst<U32>(Opcode::SharedAtomicAnd32, address, data);
}
U32 IREmitter::SharedAtomicOr(const U32& address, const U32& data) {
return Inst<U32>(Opcode::SharedAtomicOr32, address, data);
}
U32 IREmitter::SharedAtomicXor(const U32& address, const U32& data) {
return Inst<U32>(Opcode::SharedAtomicXor32, address, data);
}
U32 IREmitter::SharedAtomicIIncrement(const U32& address) {
return Inst<U32>(Opcode::SharedAtomicIIncrement32, address);
}
U32 IREmitter::SharedAtomicIDecrement(const U32& address) {
return Inst<U32>(Opcode::SharedAtomicIDecrement32, address);
}
U32 IREmitter::SharedAtomicISub(const U32& address, const U32& data) {
return Inst<U32>(Opcode::SharedAtomicISub32, address, data);
}
U32 IREmitter::ReadConst(const Value& base, const U32& offset) {
return Inst<U32>(Opcode::ReadConst, base, offset);
}
U32 IREmitter::ReadConstBuffer(const Value& handle, const U32& index) {
return Inst<U32>(Opcode::ReadConstBuffer, handle, index);
}
U32 IREmitter::LoadBufferU8(const Value& handle, const Value& address, BufferInstInfo info) {
return Inst<U32>(Opcode::LoadBufferU8, Flags{info}, handle, address);
}
U32 IREmitter::LoadBufferU16(const Value& handle, const Value& address, BufferInstInfo info) {
return Inst<U32>(Opcode::LoadBufferU16, Flags{info}, handle, address);
}
Value IREmitter::LoadBufferU32(int num_dwords, const Value& handle, const Value& address,
BufferInstInfo info) {
switch (num_dwords) {
case 1:
return Inst(Opcode::LoadBufferU32, Flags{info}, handle, address);
case 2:
return Inst(Opcode::LoadBufferU32x2, Flags{info}, handle, address);
case 3:
return Inst(Opcode::LoadBufferU32x3, Flags{info}, handle, address);
case 4:
return Inst(Opcode::LoadBufferU32x4, Flags{info}, handle, address);
default:
UNREACHABLE_MSG("Invalid number of dwords {}", num_dwords);
}
}
Value IREmitter::LoadBufferF32(int num_dwords, const Value& handle, const Value& address,
BufferInstInfo info) {
switch (num_dwords) {
case 1:
return Inst(Opcode::LoadBufferF32, Flags{info}, handle, address);
case 2:
return Inst(Opcode::LoadBufferF32x2, Flags{info}, handle, address);
case 3:
return Inst(Opcode::LoadBufferF32x3, Flags{info}, handle, address);
case 4:
return Inst(Opcode::LoadBufferF32x4, Flags{info}, handle, address);
default:
UNREACHABLE_MSG("Invalid number of dwords {}", num_dwords);
}
}
Value IREmitter::LoadBufferFormat(const Value& handle, const Value& address, BufferInstInfo info) {
return Inst(Opcode::LoadBufferFormatF32, Flags{info}, handle, address);
}
void IREmitter::StoreBufferU8(const Value& handle, const Value& address, const U32& data,
BufferInstInfo info) {
Inst(Opcode::StoreBufferU8, Flags{info}, handle, address, data);
}
void IREmitter::StoreBufferU16(const Value& handle, const Value& address, const U32& data,
BufferInstInfo info) {
Inst(Opcode::StoreBufferU16, Flags{info}, handle, address, data);
}
void IREmitter::StoreBufferU32(int num_dwords, const Value& handle, const Value& address,
const Value& data, BufferInstInfo info) {
switch (num_dwords) {
case 1:
Inst(Opcode::StoreBufferU32, Flags{info}, handle, address, data);
break;
case 2:
Inst(Opcode::StoreBufferU32x2, Flags{info}, handle, address, data);
break;
case 3:
Inst(Opcode::StoreBufferU32x3, Flags{info}, handle, address, data);
break;
case 4:
Inst(Opcode::StoreBufferU32x4, Flags{info}, handle, address, data);
break;
default:
UNREACHABLE_MSG("Invalid number of dwords {}", num_dwords);
}
}
void IREmitter::StoreBufferF32(int num_dwords, const Value& handle, const Value& address,
const Value& data, BufferInstInfo info) {
switch (num_dwords) {
case 1:
Inst(Opcode::StoreBufferF32, Flags{info}, handle, address, data);
break;
case 2:
Inst(Opcode::StoreBufferF32x2, Flags{info}, handle, address, data);
break;
case 3:
Inst(Opcode::StoreBufferF32x3, Flags{info}, handle, address, data);
break;
case 4:
Inst(Opcode::StoreBufferF32x4, Flags{info}, handle, address, data);
break;
default:
UNREACHABLE_MSG("Invalid number of dwords {}", num_dwords);
}
}
void IREmitter::StoreBufferFormat(const Value& handle, const Value& address, const Value& data,
BufferInstInfo info) {
Inst(Opcode::StoreBufferFormatF32, Flags{info}, handle, address, data);
}
Value IREmitter::BufferAtomicIAdd(const Value& handle, const Value& address, const Value& value,
BufferInstInfo info) {
return Inst(Opcode::BufferAtomicIAdd32, Flags{info}, handle, address, value);
}
Value IREmitter::BufferAtomicIMin(const Value& handle, const Value& address, const Value& value,
bool is_signed, BufferInstInfo info) {
return is_signed ? Inst(Opcode::BufferAtomicSMin32, Flags{info}, handle, address, value)
: Inst(Opcode::BufferAtomicUMin32, Flags{info}, handle, address, value);
}
Value IREmitter::BufferAtomicIMax(const Value& handle, const Value& address, const Value& value,
bool is_signed, BufferInstInfo info) {
return is_signed ? Inst(Opcode::BufferAtomicSMax32, Flags{info}, handle, address, value)
: Inst(Opcode::BufferAtomicUMax32, Flags{info}, handle, address, value);
}
Value IREmitter::BufferAtomicInc(const Value& handle, const Value& address, const Value& value,
BufferInstInfo info) {
return Inst(Opcode::BufferAtomicInc32, Flags{info}, handle, address, value);
}
Value IREmitter::BufferAtomicDec(const Value& handle, const Value& address, const Value& value,
BufferInstInfo info) {
return Inst(Opcode::BufferAtomicDec32, Flags{info}, handle, address, value);
}
Value IREmitter::BufferAtomicAnd(const Value& handle, const Value& address, const Value& value,
BufferInstInfo info) {
return Inst(Opcode::BufferAtomicAnd32, Flags{info}, handle, address, value);
}
Value IREmitter::BufferAtomicOr(const Value& handle, const Value& address, const Value& value,
BufferInstInfo info) {
return Inst(Opcode::BufferAtomicOr32, Flags{info}, handle, address, value);
}
Value IREmitter::BufferAtomicXor(const Value& handle, const Value& address, const Value& value,
BufferInstInfo info) {
return Inst(Opcode::BufferAtomicXor32, Flags{info}, handle, address, value);
}
Value IREmitter::BufferAtomicSwap(const Value& handle, const Value& address, const Value& value,
BufferInstInfo info) {
return Inst(Opcode::BufferAtomicSwap32, Flags{info}, handle, address, value);
}
U32 IREmitter::DataAppend(const U32& counter) {
return Inst<U32>(Opcode::DataAppend, counter, Imm32(0));
}
U32 IREmitter::DataConsume(const U32& counter) {
return Inst<U32>(Opcode::DataConsume, counter, Imm32(0));
}
U32 IREmitter::LaneId() {
return Inst<U32>(Opcode::LaneId);
}
U32 IREmitter::WarpId() {
return Inst<U32>(Opcode::WarpId);
}
U32 IREmitter::QuadShuffle(const U32& value, const U32& index) {
return Inst<U32>(Opcode::QuadShuffle, value, index);
}
U32 IREmitter::ReadFirstLane(const U32& value) {
return Inst<U32>(Opcode::ReadFirstLane, value);
}
U32 IREmitter::ReadLane(const U32& value, const U32& lane) {
return Inst<U32>(Opcode::ReadLane, value, lane);
}
U32 IREmitter::WriteLane(const U32& value, const U32& write_value, const U32& lane) {
return Inst<U32>(Opcode::WriteLane, value, write_value, lane);
}
F32F64 IREmitter::FPAdd(const F32F64& a, const F32F64& b) {
if (a.Type() != b.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", a.Type(), b.Type());
}
switch (a.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPAdd32, a, b);
case Type::F64:
return Inst<F64>(Opcode::FPAdd64, a, b);
default:
ThrowInvalidType(a.Type());
}
}
F32F64 IREmitter::FPSub(const F32F64& a, const F32F64& b) {
if (a.Type() != b.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", a.Type(), b.Type());
}
switch (a.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPSub32, a, b);
default:
ThrowInvalidType(a.Type());
}
}
Value IREmitter::CompositeConstruct(const Value& e1, const Value& e2) {
if (e1.Type() != e2.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", e1.Type(), e2.Type());
}
switch (e1.Type()) {
case Type::U32:
return Inst(Opcode::CompositeConstructU32x2, e1, e2);
case Type::U32x2:
return Inst(Opcode::CompositeConstructU32x2x2, e1, e2);
case Type::F16:
return Inst(Opcode::CompositeConstructF16x2, e1, e2);
case Type::F32:
return Inst(Opcode::CompositeConstructF32x2, e1, e2);
case Type::F32x2:
return Inst(Opcode::CompositeConstructF32x2x2, e1, e2);
case Type::F64:
return Inst(Opcode::CompositeConstructF64x2, e1, e2);
default:
ThrowInvalidType(e1.Type());
}
}
Value IREmitter::CompositeConstruct(const Value& e1, const Value& e2, const Value& e3) {
if (e1.Type() != e2.Type() || e1.Type() != e3.Type()) {
UNREACHABLE_MSG("Mismatching types {}, {}, and {}", e1.Type(), e2.Type(), e3.Type());
}
switch (e1.Type()) {
case Type::U32:
return Inst(Opcode::CompositeConstructU32x3, e1, e2, e3);
case Type::F16:
return Inst(Opcode::CompositeConstructF16x3, e1, e2, e3);
case Type::F32:
return Inst(Opcode::CompositeConstructF32x3, e1, e2, e3);
case Type::F64:
return Inst(Opcode::CompositeConstructF64x3, e1, e2, e3);
default:
ThrowInvalidType(e1.Type());
}
}
Value IREmitter::CompositeConstruct(const Value& e1, const Value& e2, const Value& e3,
const Value& e4) {
if (e1.Type() != e2.Type() || e1.Type() != e3.Type() || e1.Type() != e4.Type()) {
UNREACHABLE_MSG("Mismatching types {}, {}, {}, and {}", e1.Type(), e2.Type(), e3.Type(),
e4.Type());
}
switch (e1.Type()) {
case Type::U32:
return Inst(Opcode::CompositeConstructU32x4, e1, e2, e3, e4);
case Type::F16:
return Inst(Opcode::CompositeConstructF16x4, e1, e2, e3, e4);
case Type::F32:
return Inst(Opcode::CompositeConstructF32x4, e1, e2, e3, e4);
case Type::F64:
return Inst(Opcode::CompositeConstructF64x4, e1, e2, e3, e4);
default:
ThrowInvalidType(e1.Type());
}
}
Value IREmitter::CompositeConstruct(std::span<const Value> elements) {
switch (elements.size()) {
case 2:
return CompositeConstruct(elements[0], elements[1]);
case 3:
return CompositeConstruct(elements[0], elements[1], elements[2]);
case 4:
return CompositeConstruct(elements[0], elements[1], elements[2], elements[3]);
default:
UNREACHABLE_MSG("Composite construct with {} elements, only 2-4 are supported",
elements.size());
}
}
Value IREmitter::CompositeExtract(const Value& vector, size_t element) {
const auto read{[&](Opcode opcode, size_t limit) -> Value {
if (element >= limit) {
UNREACHABLE_MSG("Out of bounds element {}", element);
}
return Inst(opcode, vector, Value{static_cast<u32>(element)});
}};
switch (vector.Type()) {
case Type::U32x2:
return read(Opcode::CompositeExtractU32x2, 2);
case Type::U32x3:
return read(Opcode::CompositeExtractU32x3, 3);
case Type::U32x4:
return read(Opcode::CompositeExtractU32x4, 4);
case Type::F16x2:
return read(Opcode::CompositeExtractF16x2, 2);
case Type::F16x3:
return read(Opcode::CompositeExtractF16x3, 3);
case Type::F16x4:
return read(Opcode::CompositeExtractF16x4, 4);
case Type::F32x2:
return read(Opcode::CompositeExtractF32x2, 2);
case Type::F32x3:
return read(Opcode::CompositeExtractF32x3, 3);
case Type::F32x4:
return read(Opcode::CompositeExtractF32x4, 4);
case Type::F64x2:
return read(Opcode::CompositeExtractF64x2, 2);
case Type::F64x3:
return read(Opcode::CompositeExtractF64x3, 3);
case Type::F64x4:
return read(Opcode::CompositeExtractF64x4, 4);
default:
ThrowInvalidType(vector.Type());
}
}
Value IREmitter::CompositeInsert(const Value& vector, const Value& object, size_t element) {
const auto insert{[&](Opcode opcode, size_t limit) {
if (element >= limit) {
UNREACHABLE_MSG("Out of bounds element {}", element);
}
return Inst(opcode, vector, object, Value{static_cast<u32>(element)});
}};
switch (vector.Type()) {
case Type::U32x2:
return insert(Opcode::CompositeInsertU32x2, 2);
case Type::U32x3:
return insert(Opcode::CompositeInsertU32x3, 3);
case Type::U32x4:
return insert(Opcode::CompositeInsertU32x4, 4);
case Type::F16x2:
return insert(Opcode::CompositeInsertF16x2, 2);
case Type::F16x3:
return insert(Opcode::CompositeInsertF16x3, 3);
case Type::F16x4:
return insert(Opcode::CompositeInsertF16x4, 4);
case Type::F32x2:
return insert(Opcode::CompositeInsertF32x2, 2);
case Type::F32x3:
return insert(Opcode::CompositeInsertF32x3, 3);
case Type::F32x4:
return insert(Opcode::CompositeInsertF32x4, 4);
case Type::F64x2:
return insert(Opcode::CompositeInsertF64x2, 2);
case Type::F64x3:
return insert(Opcode::CompositeInsertF64x3, 3);
case Type::F64x4:
return insert(Opcode::CompositeInsertF64x4, 4);
default:
ThrowInvalidType(vector.Type());
}
}
Value IREmitter::CompositeShuffle(const Value& vector1, const Value& vector2, size_t comp0,
size_t comp1) {
if (vector1.Type() != vector2.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", vector1.Type(), vector2.Type());
}
if (comp0 >= 4 || comp1 >= 4) {
UNREACHABLE_MSG("One or more out of bounds elements {}, {}", comp0, comp1);
}
const auto shuffle{[&](Opcode opcode) -> Value {
return Inst(opcode, vector1, vector2, Value{static_cast<u32>(comp0)},
Value{static_cast<u32>(comp1)});
}};
switch (vector1.Type()) {
case Type::U32x4:
return shuffle(Opcode::CompositeShuffleU32x2);
case Type::F16x4:
return shuffle(Opcode::CompositeShuffleF16x2);
case Type::F32x4:
return shuffle(Opcode::CompositeShuffleF32x2);
case Type::F64x4:
return shuffle(Opcode::CompositeShuffleF64x2);
default:
ThrowInvalidType(vector1.Type());
}
}
Value IREmitter::CompositeShuffle(const Value& vector1, const Value& vector2, size_t comp0,
size_t comp1, size_t comp2) {
if (vector1.Type() != vector2.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", vector1.Type(), vector2.Type());
}
if (comp0 >= 6 || comp1 >= 6 || comp2 >= 6) {
UNREACHABLE_MSG("One or more out of bounds elements {}, {}, {}", comp0, comp1, comp2);
}
const auto shuffle{[&](Opcode opcode) -> Value {
return Inst(opcode, vector1, vector2, Value{static_cast<u32>(comp0)},
Value{static_cast<u32>(comp1)}, Value{static_cast<u32>(comp2)});
}};
switch (vector1.Type()) {
case Type::U32x4:
return shuffle(Opcode::CompositeShuffleU32x3);
case Type::F16x4:
return shuffle(Opcode::CompositeShuffleF16x3);
case Type::F32x4:
return shuffle(Opcode::CompositeShuffleF32x3);
case Type::F64x4:
return shuffle(Opcode::CompositeShuffleF64x3);
default:
ThrowInvalidType(vector1.Type());
}
}
Value IREmitter::CompositeShuffle(const Value& vector1, const Value& vector2, size_t comp0,
size_t comp1, size_t comp2, size_t comp3) {
if (vector1.Type() != vector2.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", vector1.Type(), vector2.Type());
}
if (comp0 >= 8 || comp1 >= 8 || comp2 >= 8 || comp3 >= 8) {
UNREACHABLE_MSG("One or more out of bounds elements {}, {}, {}, {}", comp0, comp1, comp2,
comp3);
}
const auto shuffle{[&](Opcode opcode) -> Value {
return Inst(opcode, vector1, vector2, Value{static_cast<u32>(comp0)},
Value{static_cast<u32>(comp1)}, Value{static_cast<u32>(comp2)},
Value{static_cast<u32>(comp3)});
}};
switch (vector1.Type()) {
case Type::U32x4:
return shuffle(Opcode::CompositeShuffleU32x4);
case Type::F16x4:
return shuffle(Opcode::CompositeShuffleF16x4);
case Type::F32x4:
return shuffle(Opcode::CompositeShuffleF32x4);
case Type::F64x4:
return shuffle(Opcode::CompositeShuffleF64x4);
default:
ThrowInvalidType(vector1.Type());
}
}
Value IREmitter::Select(const U1& condition, const Value& true_value, const Value& false_value) {
if (true_value.Type() != false_value.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", true_value.Type(), false_value.Type());
}
switch (true_value.Type()) {
case Type::U1:
return Inst(Opcode::SelectU1, condition, true_value, false_value);
case Type::U8:
return Inst(Opcode::SelectU8, condition, true_value, false_value);
case Type::U16:
return Inst(Opcode::SelectU16, condition, true_value, false_value);
case Type::U32:
return Inst(Opcode::SelectU32, condition, true_value, false_value);
case Type::U64:
return Inst(Opcode::SelectU64, condition, true_value, false_value);
case Type::F32:
return Inst(Opcode::SelectF32, condition, true_value, false_value);
case Type::F64:
return Inst(Opcode::SelectF64, condition, true_value, false_value);
default:
UNREACHABLE_MSG("Invalid type {}", true_value.Type());
}
}
U64 IREmitter::PackUint2x32(const Value& vector) {
return Inst<U64>(Opcode::PackUint2x32, vector);
}
Value IREmitter::UnpackUint2x32(const U64& value) {
return Inst<Value>(Opcode::UnpackUint2x32, value);
}
F64 IREmitter::PackFloat2x32(const Value& vector) {
return Inst<F64>(Opcode::PackFloat2x32, vector);
}
U32 IREmitter::Pack2x16(const AmdGpu::NumberFormat number_format, const Value& vector) {
switch (number_format) {
case AmdGpu::NumberFormat::Unorm:
return Inst<U32>(Opcode::PackUnorm2x16, vector);
case AmdGpu::NumberFormat::Snorm:
return Inst<U32>(Opcode::PackSnorm2x16, vector);
case AmdGpu::NumberFormat::Uint:
return Inst<U32>(Opcode::PackUint2x16, vector);
case AmdGpu::NumberFormat::Sint:
return Inst<U32>(Opcode::PackSint2x16, vector);
case AmdGpu::NumberFormat::Float:
return Inst<U32>(Opcode::PackHalf2x16, vector);
default:
UNREACHABLE_MSG("Unsupported 2x16 number format: {}", number_format);
}
}
Value IREmitter::Unpack2x16(const AmdGpu::NumberFormat number_format, const U32& value) {
switch (number_format) {
case AmdGpu::NumberFormat::Unorm:
return Inst(Opcode::UnpackUnorm2x16, value);
case AmdGpu::NumberFormat::Snorm:
return Inst(Opcode::UnpackSnorm2x16, value);
case AmdGpu::NumberFormat::Uint:
return Inst(Opcode::UnpackUint2x16, value);
case AmdGpu::NumberFormat::Sint:
return Inst(Opcode::UnpackSint2x16, value);
case AmdGpu::NumberFormat::Float:
return Inst(Opcode::UnpackHalf2x16, value);
default:
UNREACHABLE_MSG("Unsupported 2x16 number format: {}", number_format);
}
}
U32 IREmitter::Pack4x8(const AmdGpu::NumberFormat number_format, const Value& vector) {
switch (number_format) {
case AmdGpu::NumberFormat::Unorm:
return Inst<U32>(Opcode::PackUnorm4x8, vector);
case AmdGpu::NumberFormat::Snorm:
return Inst<U32>(Opcode::PackSnorm4x8, vector);
case AmdGpu::NumberFormat::Uint:
return Inst<U32>(Opcode::PackUint4x8, vector);
case AmdGpu::NumberFormat::Sint:
return Inst<U32>(Opcode::PackSint4x8, vector);
default:
UNREACHABLE_MSG("Unsupported 4x8 number format: {}", number_format);
}
}
Value IREmitter::Unpack4x8(const AmdGpu::NumberFormat number_format, const U32& value) {
switch (number_format) {
case AmdGpu::NumberFormat::Unorm:
return Inst(Opcode::UnpackUnorm4x8, value);
case AmdGpu::NumberFormat::Snorm:
return Inst(Opcode::UnpackSnorm4x8, value);
case AmdGpu::NumberFormat::Uint:
return Inst(Opcode::UnpackUint4x8, value);
case AmdGpu::NumberFormat::Sint:
return Inst(Opcode::UnpackSint4x8, value);
default:
UNREACHABLE_MSG("Unsupported 4x8 number format: {}", number_format);
}
}
U32 IREmitter::Pack10_11_11(const AmdGpu::NumberFormat number_format, const Value& vector) {
switch (number_format) {
case AmdGpu::NumberFormat::Float:
return Inst<U32>(Opcode::PackUfloat10_11_11, vector);
default:
UNREACHABLE_MSG("Unsupported 10_11_11 number format: {}", number_format);
}
}
U32 IREmitter::Pack2_10_10_10(const AmdGpu::NumberFormat number_format, const Value& vector) {
switch (number_format) {
case AmdGpu::NumberFormat::Unorm:
return Inst<U32>(Opcode::PackUnorm2_10_10_10, vector);
case AmdGpu::NumberFormat::Snorm:
return Inst<U32>(Opcode::PackSnorm2_10_10_10, vector);
case AmdGpu::NumberFormat::Uint:
return Inst<U32>(Opcode::PackUint2_10_10_10, vector);
case AmdGpu::NumberFormat::Sint:
return Inst<U32>(Opcode::PackSint2_10_10_10, vector);
default:
UNREACHABLE_MSG("Unsupported 2_10_10_10 number format: {}", number_format);
}
}
Value IREmitter::Unpack2_10_10_10(const AmdGpu::NumberFormat number_format, const U32& value) {
switch (number_format) {
case AmdGpu::NumberFormat::Unorm:
return Inst(Opcode::UnpackUnorm2_10_10_10, value);
case AmdGpu::NumberFormat::Snorm:
return Inst(Opcode::UnpackSnorm2_10_10_10, value);
case AmdGpu::NumberFormat::Uint:
return Inst(Opcode::UnpackUint2_10_10_10, value);
case AmdGpu::NumberFormat::Sint:
return Inst(Opcode::UnpackSint2_10_10_10, value);
default:
UNREACHABLE_MSG("Unsupported 2_10_10_10 number format: {}", number_format);
}
}
Value IREmitter::Unpack10_11_11(const AmdGpu::NumberFormat number_format, const U32& value) {
switch (number_format) {
case AmdGpu::NumberFormat::Float:
return Inst(Opcode::UnpackUfloat10_11_11, value);
default:
UNREACHABLE_MSG("Unsupported 10_11_11 number format: {}", number_format);
}
}
F32F64 IREmitter::FPMul(const F32F64& a, const F32F64& b) {
if (a.Type() != b.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", a.Type(), b.Type());
}
switch (a.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPMul32, a, b);
case Type::F64:
return Inst<F64>(Opcode::FPMul64, a, b);
default:
ThrowInvalidType(a.Type());
}
}
F32F64 IREmitter::FPDiv(const F32F64& a, const F32F64& b) {
if (a.Type() != b.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", a.Type(), b.Type());
}
switch (a.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPDiv32, a, b);
case Type::F64:
return Inst<F64>(Opcode::FPDiv64, a, b);
default:
ThrowInvalidType(a.Type());
}
}
F32F64 IREmitter::FPFma(const F32F64& a, const F32F64& b, const F32F64& c) {
if (a.Type() != b.Type() || a.Type() != c.Type()) {
UNREACHABLE_MSG("Mismatching types {}, {}, and {}", a.Type(), b.Type(), c.Type());
}
switch (a.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPFma32, a, b, c);
case Type::F64:
return Inst<F64>(Opcode::FPFma64, a, b, c);
default:
ThrowInvalidType(a.Type());
}
}
F32F64 IREmitter::FPAbs(const F32F64& value) {
switch (value.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPAbs32, value);
case Type::F64:
return Inst<F64>(Opcode::FPAbs64, value);
default:
ThrowInvalidType(value.Type());
}
}
F32F64 IREmitter::FPNeg(const F32F64& value) {
switch (value.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPNeg32, value);
case Type::F64:
return Inst<F64>(Opcode::FPNeg64, value);
default:
ThrowInvalidType(value.Type());
}
}
F32F64 IREmitter::FPAbsNeg(const F32F64& value, bool abs, bool neg) {
F32F64 result{value};
if (abs) {
result = FPAbs(result);
}
if (neg) {
result = FPNeg(result);
}
return result;
}
F32 IREmitter::FPCos(const F32& value) {
return Inst<F32>(Opcode::FPCos, value);
}
F32 IREmitter::FPSin(const F32& value) {
return Inst<F32>(Opcode::FPSin, value);
}
F32 IREmitter::FPExp2(const F32& value) {
return Inst<F32>(Opcode::FPExp2, value);
}
F32 IREmitter::FPLdexp(const F32& value, const U32& exp) {
return Inst<F32>(Opcode::FPLdexp, value, exp);
}
F32 IREmitter::FPLog2(const F32& value) {
return Inst<F32>(Opcode::FPLog2, value);
}
F32F64 IREmitter::FPRecip(const F32F64& value) {
switch (value.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPRecip32, value);
case Type::F64:
return Inst<F64>(Opcode::FPRecip64, value);
default:
ThrowInvalidType(value.Type());
}
}
F32F64 IREmitter::FPRecipSqrt(const F32F64& value) {
switch (value.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPRecipSqrt32, value);
case Type::F64:
return Inst<F64>(Opcode::FPRecipSqrt64, value);
default:
ThrowInvalidType(value.Type());
}
}
F32 IREmitter::FPSqrt(const F32& value) {
return Inst<F32>(Opcode::FPSqrt, value);
}
F32F64 IREmitter::FPSaturate(const F32F64& value) {
switch (value.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPSaturate32, value);
case Type::F64:
return Inst<F64>(Opcode::FPSaturate64, value);
default:
ThrowInvalidType(value.Type());
}
}
F32F64 IREmitter::FPClamp(const F32F64& value, const F32F64& min_value, const F32F64& max_value) {
if (value.Type() != min_value.Type() || value.Type() != max_value.Type()) {
UNREACHABLE_MSG("Mismatching types {}, {}, and {}", value.Type(), min_value.Type(),
max_value.Type());
}
switch (value.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPClamp32, value, min_value, max_value);
case Type::F64:
return Inst<F64>(Opcode::FPClamp64, value, min_value, max_value);
default:
ThrowInvalidType(value.Type());
}
}
F32F64 IREmitter::FPRoundEven(const F32F64& value) {
switch (value.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPRoundEven32, value);
case Type::F64:
return Inst<F64>(Opcode::FPRoundEven64, value);
default:
ThrowInvalidType(value.Type());
}
}
F32F64 IREmitter::FPFloor(const F32F64& value) {
switch (value.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPFloor32, value);
case Type::F64:
return Inst<F64>(Opcode::FPFloor64, value);
default:
ThrowInvalidType(value.Type());
}
}
F32F64 IREmitter::FPCeil(const F32F64& value) {
switch (value.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPCeil32, value);
case Type::F64:
return Inst<F64>(Opcode::FPCeil64, value);
default:
ThrowInvalidType(value.Type());
}
}
F32F64 IREmitter::FPTrunc(const F32F64& value) {
switch (value.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPTrunc32, value);
case Type::F64:
return Inst<F64>(Opcode::FPTrunc64, value);
default:
ThrowInvalidType(value.Type());
}
}
F32F64 IREmitter::FPFract(const F32F64& value) {
switch (value.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPFract32, value);
case Type::F64:
return Inst<F64>(Opcode::FPFract64, value);
default:
ThrowInvalidType(value.Type());
}
}
F32F64 IREmitter::FPFrexpSig(const F32F64& value) {
switch (value.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPFrexpSig32, value);
case Type::F64:
return Inst<F64>(Opcode::FPFrexpSig64, value);
default:
ThrowInvalidType(value.Type());
}
}
U32 IREmitter::FPFrexpExp(const F32F64& value) {
switch (value.Type()) {
case Type::F32:
return Inst<U32>(Opcode::FPFrexpExp32, value);
case Type::F64:
return Inst<U32>(Opcode::FPFrexpExp64, value);
default:
ThrowInvalidType(value.Type());
}
}
U1 IREmitter::FPEqual(const F32F64& lhs, const F32F64& rhs, bool ordered) {
if (lhs.Type() != rhs.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
switch (lhs.Type()) {
case Type::F32:
return Inst<U1>(ordered ? Opcode::FPOrdEqual32 : Opcode::FPUnordEqual32, lhs, rhs);
case Type::F64:
return Inst<U1>(ordered ? Opcode::FPOrdEqual64 : Opcode::FPUnordEqual64, lhs, rhs);
default:
ThrowInvalidType(lhs.Type());
}
}
U1 IREmitter::FPNotEqual(const F32F64& lhs, const F32F64& rhs, bool ordered) {
if (lhs.Type() != rhs.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
switch (lhs.Type()) {
case Type::F32:
return Inst<U1>(ordered ? Opcode::FPOrdNotEqual32 : Opcode::FPUnordNotEqual32, lhs, rhs);
case Type::F64:
return Inst<U1>(ordered ? Opcode::FPOrdNotEqual64 : Opcode::FPUnordNotEqual64, lhs, rhs);
default:
ThrowInvalidType(lhs.Type());
}
}
U1 IREmitter::FPLessThan(const F32F64& lhs, const F32F64& rhs, bool ordered) {
if (lhs.Type() != rhs.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
switch (lhs.Type()) {
case Type::F32:
return Inst<U1>(ordered ? Opcode::FPOrdLessThan32 : Opcode::FPUnordLessThan32, lhs, rhs);
case Type::F64:
return Inst<U1>(ordered ? Opcode::FPOrdLessThan64 : Opcode::FPUnordLessThan64, lhs, rhs);
default:
ThrowInvalidType(lhs.Type());
}
}
U1 IREmitter::FPGreaterThan(const F32F64& lhs, const F32F64& rhs, bool ordered) {
if (lhs.Type() != rhs.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
switch (lhs.Type()) {
case Type::F32:
return Inst<U1>(ordered ? Opcode::FPOrdGreaterThan32 : Opcode::FPUnordGreaterThan32, lhs,
rhs);
case Type::F64:
return Inst<U1>(ordered ? Opcode::FPOrdGreaterThan64 : Opcode::FPUnordGreaterThan64, lhs,
rhs);
default:
ThrowInvalidType(lhs.Type());
}
}
U1 IREmitter::FPLessThanEqual(const F32F64& lhs, const F32F64& rhs, bool ordered) {
if (lhs.Type() != rhs.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
switch (lhs.Type()) {
case Type::F32:
return Inst<U1>(ordered ? Opcode::FPOrdLessThanEqual32 : Opcode::FPUnordLessThanEqual32,
lhs, rhs);
case Type::F64:
return Inst<U1>(ordered ? Opcode::FPOrdLessThanEqual64 : Opcode::FPUnordLessThanEqual64,
lhs, rhs);
default:
ThrowInvalidType(lhs.Type());
}
}
U1 IREmitter::FPGreaterThanEqual(const F32F64& lhs, const F32F64& rhs, bool ordered) {
if (lhs.Type() != rhs.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
switch (lhs.Type()) {
case Type::F32:
return Inst<U1>(ordered ? Opcode::FPOrdGreaterThanEqual32
: Opcode::FPUnordGreaterThanEqual32,
lhs, rhs);
case Type::F64:
return Inst<U1>(ordered ? Opcode::FPOrdGreaterThanEqual64
: Opcode::FPUnordGreaterThanEqual64,
lhs, rhs);
default:
ThrowInvalidType(lhs.Type());
}
}
U1 IREmitter::FPIsNan(const F32F64& value) {
switch (value.Type()) {
case Type::F32:
return Inst<U1>(Opcode::FPIsNan32, value);
case Type::F64:
return Inst<U1>(Opcode::FPIsNan64, value);
default:
ThrowInvalidType(value.Type());
}
}
U1 IREmitter::FPIsInf(const F32F64& value) {
switch (value.Type()) {
case Type::F32:
return Inst<U1>(Opcode::FPIsInf32, value);
case Type::F64:
return Inst<U1>(Opcode::FPIsInf64, value);
default:
ThrowInvalidType(value.Type());
}
}
U1 IREmitter::FPCmpClass32(const F32& value, const U32& op) {
return Inst<U1>(Opcode::FPCmpClass32, value, op);
}
U1 IREmitter::FPOrdered(const F32F64& lhs, const F32F64& rhs) {
if (lhs.Type() != rhs.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
return LogicalAnd(LogicalNot(FPIsNan(lhs)), LogicalNot(FPIsNan(rhs)));
}
U1 IREmitter::FPUnordered(const F32F64& lhs, const F32F64& rhs) {
if (lhs.Type() != rhs.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
return LogicalOr(FPIsNan(lhs), FPIsNan(rhs));
}
F32F64 IREmitter::FPMax(const F32F64& lhs, const F32F64& rhs, bool is_legacy) {
if (lhs.Type() != rhs.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
switch (lhs.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPMax32, lhs, rhs, is_legacy);
case Type::F64:
if (is_legacy) {
UNREACHABLE_MSG("F64 cannot be used with LEGACY ops");
}
return Inst<F64>(Opcode::FPMax64, lhs, rhs);
default:
ThrowInvalidType(lhs.Type());
}
}
F32F64 IREmitter::FPMin(const F32F64& lhs, const F32F64& rhs, bool is_legacy) {
if (lhs.Type() != rhs.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
switch (lhs.Type()) {
case Type::F32:
return Inst<F32>(Opcode::FPMin32, lhs, rhs, is_legacy);
case Type::F64:
if (is_legacy) {
UNREACHABLE_MSG("F64 cannot be used with LEGACY ops");
}
return Inst<F64>(Opcode::FPMin64, lhs, rhs);
default:
ThrowInvalidType(lhs.Type());
}
}
F32F64 IREmitter::FPMinTri(const F32F64& a, const F32F64& b, const F32F64& c) {
return Inst<F32>(Opcode::FPMinTri32, a, b, c);
}
F32F64 IREmitter::FPMaxTri(const F32F64& a, const F32F64& b, const F32F64& c) {
return Inst<F32>(Opcode::FPMaxTri32, a, b, c);
}
F32F64 IREmitter::FPMedTri(const F32F64& a, const F32F64& b, const F32F64& c) {
return Inst<F32>(Opcode::FPMedTri32, a, b, c);
}
U32U64 IREmitter::IAdd(const U32U64& a, const U32U64& b) {
if (a.Type() != b.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", a.Type(), b.Type());
}
switch (a.Type()) {
case Type::U32:
return Inst<U32>(Opcode::IAdd32, a, b);
case Type::U64:
return Inst<U64>(Opcode::IAdd64, a, b);
default:
ThrowInvalidType(a.Type());
}
}
Value IREmitter::IAddCary(const U32& a, const U32& b) {
if (a.Type() != b.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", a.Type(), b.Type());
}
switch (a.Type()) {
case Type::U32:
return Inst<U32>(Opcode::IAddCary32, a, b);
default:
ThrowInvalidType(a.Type());
}
}
U32U64 IREmitter::ISub(const U32U64& a, const U32U64& b) {
if (a.Type() != b.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", a.Type(), b.Type());
}
switch (a.Type()) {
case Type::U32:
return Inst<U32>(Opcode::ISub32, a, b);
case Type::U64:
return Inst<U64>(Opcode::ISub64, a, b);
default:
ThrowInvalidType(a.Type());
}
}
U32 IREmitter::IMulHi(const U32& a, const U32& b, bool is_signed) {
return Inst<U32>(is_signed ? Opcode::SMulHi : Opcode::UMulHi, a, b);
}
U32U64 IREmitter::IMul(const U32U64& a, const U32U64& b) {
if (a.Type() != b.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", a.Type(), b.Type());
}
switch (a.Type()) {
case Type::U32:
return Inst<U32>(Opcode::IMul32, a, b);
case Type::U64:
return Inst<U64>(Opcode::IMul64, a, b);
default:
ThrowInvalidType(a.Type());
}
}
U32 IREmitter::IDiv(const U32& a, const U32& b, bool is_signed) {
return Inst<U32>(is_signed ? Opcode::SDiv32 : Opcode::UDiv32, a, b);
}
U32 IREmitter::IMod(const U32& a, const U32& b, bool is_signed) {
return Inst<U32>(is_signed ? Opcode::SMod32 : Opcode::UMod32, a, b);
}
U32U64 IREmitter::INeg(const U32U64& value) {
switch (value.Type()) {
case Type::U32:
return Inst<U32>(Opcode::INeg32, value);
case Type::U64:
return Inst<U64>(Opcode::INeg64, value);
default:
ThrowInvalidType(value.Type());
}
}
U32 IREmitter::IAbs(const U32& value) {
return Inst<U32>(Opcode::IAbs32, value);
}
U32U64 IREmitter::ShiftLeftLogical(const U32U64& base, const U32& shift) {
if (shift.IsImmediate() && shift.U32() == 0) {
return base;
}
switch (base.Type()) {
case Type::U32:
return Inst<U32>(Opcode::ShiftLeftLogical32, base, shift);
case Type::U64:
return Inst<U64>(Opcode::ShiftLeftLogical64, base, shift);
default:
ThrowInvalidType(base.Type());
}
}
U32U64 IREmitter::ShiftRightLogical(const U32U64& base, const U32& shift) {
if (shift.IsImmediate() && shift.U32() == 0) {
return base;
}
switch (base.Type()) {
case Type::U32:
return Inst<U32>(Opcode::ShiftRightLogical32, base, shift);
case Type::U64:
return Inst<U64>(Opcode::ShiftRightLogical64, base, shift);
default:
ThrowInvalidType(base.Type());
}
}
U32U64 IREmitter::ShiftRightArithmetic(const U32U64& base, const U32& shift) {
if (shift.IsImmediate() && shift.U32() == 0) {
return base;
}
switch (base.Type()) {
case Type::U32:
return Inst<U32>(Opcode::ShiftRightArithmetic32, base, shift);
case Type::U64:
return Inst<U64>(Opcode::ShiftRightArithmetic64, base, shift);
default:
ThrowInvalidType(base.Type());
}
}
U32U64 IREmitter::BitwiseAnd(const U32U64& a, const U32U64& b) {
if (a.Type() != b.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", a.Type(), b.Type());
}
switch (a.Type()) {
case Type::U32:
return Inst<U32>(Opcode::BitwiseAnd32, a, b);
case Type::U64:
return Inst<U64>(Opcode::BitwiseAnd64, a, b);
default:
ThrowInvalidType(a.Type());
}
}
U32U64 IREmitter::BitwiseOr(const U32U64& a, const U32U64& b) {
if (a.Type() != b.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", a.Type(), b.Type());
}
switch (a.Type()) {
case Type::U32:
return Inst<U32>(Opcode::BitwiseOr32, a, b);
case Type::U64:
return Inst<U64>(Opcode::BitwiseOr64, a, b);
default:
ThrowInvalidType(a.Type());
}
}
U32 IREmitter::BitwiseXor(const U32& a, const U32& b) {
return Inst<U32>(Opcode::BitwiseXor32, a, b);
}
U32 IREmitter::BitFieldInsert(const U32& base, const U32& insert, const U32& offset,
const U32& count) {
return Inst<U32>(Opcode::BitFieldInsert, base, insert, offset, count);
}
U32 IREmitter::BitFieldExtract(const U32& base, const U32& offset, const U32& count,
bool is_signed) {
return Inst<U32>(is_signed ? Opcode::BitFieldSExtract : Opcode::BitFieldUExtract, base, offset,
count);
}
U32 IREmitter::BitReverse(const U32& value) {
return Inst<U32>(Opcode::BitReverse32, value);
}
U32 IREmitter::BitCount(const U32U64& value) {
switch (value.Type()) {
case Type::U32:
return Inst<U32>(Opcode::BitCount32, value);
case Type::U64:
return Inst<U32>(Opcode::BitCount64, value);
default:
ThrowInvalidType(value.Type());
}
}
U32 IREmitter::BitwiseNot(const U32& value) {
return Inst<U32>(Opcode::BitwiseNot32, value);
}
U32 IREmitter::FindSMsb(const U32& value) {
return Inst<U32>(Opcode::FindSMsb32, value);
}
U32 IREmitter::FindUMsb(const U32& value) {
return Inst<U32>(Opcode::FindUMsb32, value);
}
U32 IREmitter::FindILsb(const U32U64& value) {
switch (value.Type()) {
case Type::U32:
return Inst<U32>(Opcode::FindILsb32, value);
case Type::U64:
return Inst<U32>(Opcode::FindILsb64, value);
default:
ThrowInvalidType(value.Type());
}
}
U32 IREmitter::SMin(const U32& a, const U32& b) {
return Inst<U32>(Opcode::SMin32, a, b);
}
U32 IREmitter::UMin(const U32& a, const U32& b) {
return Inst<U32>(Opcode::UMin32, a, b);
}
U32 IREmitter::IMin(const U32& a, const U32& b, bool is_signed) {
return is_signed ? SMin(a, b) : UMin(a, b);
}
U32 IREmitter::SMax(const U32& a, const U32& b) {
return Inst<U32>(Opcode::SMax32, a, b);
}
U32 IREmitter::UMax(const U32& a, const U32& b) {
return Inst<U32>(Opcode::UMax32, a, b);
}
U32 IREmitter::IMax(const U32& a, const U32& b, bool is_signed) {
return is_signed ? SMax(a, b) : UMax(a, b);
}
U32 IREmitter::SMinTri(const U32& a, const U32& b, const U32& c) {
return Inst<U32>(Opcode::SMinTri32, a, b, c);
}
U32 IREmitter::UMinTri(const U32& a, const U32& b, const U32& c) {
return Inst<U32>(Opcode::UMinTri32, a, b, c);
}
U32 IREmitter::IMinTri(const U32& a, const U32& b, const U32& c, bool is_signed) {
return is_signed ? SMinTri(a, b, c) : UMinTri(a, b, c);
}
U32 IREmitter::SMaxTri(const U32& a, const U32& b, const U32& c) {
return Inst<U32>(Opcode::SMaxTri32, a, b, c);
}
U32 IREmitter::UMaxTri(const U32& a, const U32& b, const U32& c) {
return Inst<U32>(Opcode::UMaxTri32, a, b, c);
}
U32 IREmitter::IMaxTri(const U32& a, const U32& b, const U32& c, bool is_signed) {
return is_signed ? SMaxTri(a, b, c) : UMaxTri(a, b, c);
}
U32 IREmitter::SMedTri(const U32& a, const U32& b, const U32& c) {
return Inst<U32>(Opcode::SMedTri32, a, b, c);
}
U32 IREmitter::UMedTri(const U32& a, const U32& b, const U32& c) {
return Inst<U32>(Opcode::UMedTri32, a, b, c);
}
U32 IREmitter::IMedTri(const U32& a, const U32& b, const U32& c, bool is_signed) {
return is_signed ? SMedTri(a, b, c) : UMedTri(a, b, c);
}
U32 IREmitter::SClamp(const U32& value, const U32& min, const U32& max) {
return Inst<U32>(Opcode::SClamp32, value, min, max);
}
U32 IREmitter::UClamp(const U32& value, const U32& min, const U32& max) {
return Inst<U32>(Opcode::UClamp32, value, min, max);
}
U1 IREmitter::ILessThan(const U32U64& lhs, const U32U64& rhs, bool is_signed) {
if (lhs.Type() != rhs.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
switch (lhs.Type()) {
case Type::U32:
return Inst<U1>(is_signed ? Opcode::SLessThan32 : Opcode::ULessThan32, lhs, rhs);
case Type::U64:
return Inst<U1>(is_signed ? Opcode::SLessThan64 : Opcode::ULessThan64, lhs, rhs);
default:
ThrowInvalidType(lhs.Type());
}
}
U1 IREmitter::IEqual(const U32U64& lhs, const U32U64& rhs) {
if (lhs.Type() != rhs.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
switch (lhs.Type()) {
case Type::U32:
return Inst<U1>(Opcode::IEqual32, lhs, rhs);
case Type::U64:
return Inst<U1>(Opcode::IEqual64, lhs, rhs);
default:
ThrowInvalidType(lhs.Type());
}
}
U1 IREmitter::ILessThanEqual(const U32& lhs, const U32& rhs, bool is_signed) {
return Inst<U1>(is_signed ? Opcode::SLessThanEqual : Opcode::ULessThanEqual, lhs, rhs);
}
U1 IREmitter::IGreaterThan(const U32& lhs, const U32& rhs, bool is_signed) {
return Inst<U1>(is_signed ? Opcode::SGreaterThan : Opcode::UGreaterThan, lhs, rhs);
}
U1 IREmitter::INotEqual(const U32U64& lhs, const U32U64& rhs) {
if (lhs.Type() != rhs.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", lhs.Type(), rhs.Type());
}
switch (lhs.Type()) {
case Type::U32:
return Inst<U1>(Opcode::INotEqual32, lhs, rhs);
case Type::U64:
return Inst<U1>(Opcode::INotEqual64, lhs, rhs);
default:
ThrowInvalidType(lhs.Type());
}
}
U1 IREmitter::IGreaterThanEqual(const U32& lhs, const U32& rhs, bool is_signed) {
return Inst<U1>(is_signed ? Opcode::SGreaterThanEqual : Opcode::UGreaterThanEqual, lhs, rhs);
}
U1 IREmitter::LogicalOr(const U1& a, const U1& b) {
return Inst<U1>(Opcode::LogicalOr, a, b);
}
U1 IREmitter::LogicalAnd(const U1& a, const U1& b) {
return Inst<U1>(Opcode::LogicalAnd, a, b);
}
U1 IREmitter::LogicalXor(const U1& a, const U1& b) {
return Inst<U1>(Opcode::LogicalXor, a, b);
}
U1 IREmitter::LogicalNot(const U1& value) {
return Inst<U1>(Opcode::LogicalNot, value);
}
U32U64 IREmitter::ConvertFToS(size_t bitsize, const F32F64& value) {
switch (bitsize) {
case 32:
switch (value.Type()) {
case Type::F32:
return Inst<U32>(Opcode::ConvertS32F32, value);
case Type::F64:
return Inst<U32>(Opcode::ConvertS32F64, value);
default:
ThrowInvalidType(value.Type());
}
default:
break;
}
throw NotImplementedException("Invalid destination bitsize {}", bitsize);
}
U32U64 IREmitter::ConvertFToU(size_t bitsize, const F32F64& value) {
switch (bitsize) {
case 32:
switch (value.Type()) {
case Type::F32:
return Inst<U32>(Opcode::ConvertU32F32, value);
default:
ThrowInvalidType(value.Type());
}
default:
UNREACHABLE_MSG("Invalid destination bitsize {}", bitsize);
}
}
U32U64 IREmitter::ConvertFToI(size_t bitsize, bool is_signed, const F32F64& value) {
return is_signed ? ConvertFToS(bitsize, value) : ConvertFToU(bitsize, value);
}
F32F64 IREmitter::ConvertSToF(size_t dest_bitsize, size_t src_bitsize, const Value& value) {
switch (dest_bitsize) {
case 32:
switch (src_bitsize) {
case 32:
return Inst<F32>(Opcode::ConvertF32S32, value);
default:
break;
}
case 64:
switch (src_bitsize) {
case 32:
return Inst<F64>(Opcode::ConvertF64S32, value);
default:
break;
}
default:
break;
}
UNREACHABLE_MSG("Invalid bit size combination dst={} src={}", dest_bitsize, src_bitsize);
}
F32F64 IREmitter::ConvertUToF(size_t dest_bitsize, size_t src_bitsize, const Value& value) {
switch (dest_bitsize) {
case 32:
switch (src_bitsize) {
case 16:
return Inst<F32>(Opcode::ConvertF32U16, value);
case 32:
return Inst<F32>(Opcode::ConvertF32U32, value);
default:
break;
}
case 64:
switch (src_bitsize) {
case 32:
return Inst<F64>(Opcode::ConvertF64U32, value);
default:
break;
}
default:
break;
}
UNREACHABLE_MSG("Invalid bit size combination dst={} src={}", dest_bitsize, src_bitsize);
}
F32F64 IREmitter::ConvertIToF(size_t dest_bitsize, size_t src_bitsize, bool is_signed,
const Value& value) {
return is_signed ? ConvertSToF(dest_bitsize, src_bitsize, value)
: ConvertUToF(dest_bitsize, src_bitsize, value);
}
U16U32U64 IREmitter::UConvert(size_t result_bitsize, const U16U32U64& value) {
switch (result_bitsize) {
case 16:
switch (value.Type()) {
case Type::U32:
return Inst<U16>(Opcode::ConvertU16U32, value);
default:
break;
}
case 32:
switch (value.Type()) {
case Type::U16:
return Inst<U32>(Opcode::ConvertU32U16, value);
default:
break;
}
default:
break;
}
throw NotImplementedException("Conversion from {} to {} bits", value.Type(), result_bitsize);
}
F16F32F64 IREmitter::FPConvert(size_t result_bitsize, const F16F32F64& value) {
switch (result_bitsize) {
case 16:
switch (value.Type()) {
case Type::F32:
return Inst<F16>(Opcode::ConvertF16F32, value);
default:
break;
}
case 32:
switch (value.Type()) {
case Type::F16:
return Inst<F32>(Opcode::ConvertF32F16, value);
case Type::F64:
return Inst<F32>(Opcode::ConvertF32F64, value);
default:
break;
}
case 64:
switch (value.Type()) {
case Type::F32:
return Inst<F64>(Opcode::ConvertF64F32, value);
default:
break;
}
default:
break;
}
throw NotImplementedException("Conversion from {} to {} bits", value.Type(), result_bitsize);
}
Value IREmitter::ImageAtomicIAdd(const Value& handle, const Value& coords, const Value& value,
TextureInstInfo info) {
return Inst(Opcode::ImageAtomicIAdd32, Flags{info}, handle, coords, value);
}
Value IREmitter::ImageAtomicSMin(const Value& handle, const Value& coords, const Value& value,
TextureInstInfo info) {
return Inst(Opcode::ImageAtomicSMin32, Flags{info}, handle, coords, value);
}
Value IREmitter::ImageAtomicUMin(const Value& handle, const Value& coords, const Value& value,
TextureInstInfo info) {
return Inst(Opcode::ImageAtomicUMin32, Flags{info}, handle, coords, value);
}
Value IREmitter::ImageAtomicIMin(const Value& handle, const Value& coords, const Value& value,
bool is_signed, TextureInstInfo info) {
return is_signed ? ImageAtomicSMin(handle, coords, value, info)
: ImageAtomicUMin(handle, coords, value, info);
}
Value IREmitter::ImageAtomicSMax(const Value& handle, const Value& coords, const Value& value,
TextureInstInfo info) {
return Inst(Opcode::ImageAtomicSMax32, Flags{info}, handle, coords, value);
}
Value IREmitter::ImageAtomicUMax(const Value& handle, const Value& coords, const Value& value,
TextureInstInfo info) {
return Inst(Opcode::ImageAtomicUMax32, Flags{info}, handle, coords, value);
}
Value IREmitter::ImageAtomicIMax(const Value& handle, const Value& coords, const Value& value,
bool is_signed, TextureInstInfo info) {
return is_signed ? ImageAtomicSMax(handle, coords, value, info)
: ImageAtomicUMax(handle, coords, value, info);
}
Value IREmitter::ImageAtomicInc(const Value& handle, const Value& coords, const Value& value,
TextureInstInfo info) {
return Inst(Opcode::ImageAtomicInc32, Flags{info}, handle, coords, value);
}
Value IREmitter::ImageAtomicDec(const Value& handle, const Value& coords, const Value& value,
TextureInstInfo info) {
return Inst(Opcode::ImageAtomicDec32, Flags{info}, handle, coords, value);
}
Value IREmitter::ImageAtomicAnd(const Value& handle, const Value& coords, const Value& value,
TextureInstInfo info) {
return Inst(Opcode::ImageAtomicAnd32, Flags{info}, handle, coords, value);
}
Value IREmitter::ImageAtomicOr(const Value& handle, const Value& coords, const Value& value,
TextureInstInfo info) {
return Inst(Opcode::ImageAtomicOr32, Flags{info}, handle, coords, value);
}
Value IREmitter::ImageAtomicXor(const Value& handle, const Value& coords, const Value& value,
TextureInstInfo info) {
return Inst(Opcode::ImageAtomicXor32, Flags{info}, handle, coords, value);
}
Value IREmitter::ImageAtomicExchange(const Value& handle, const Value& coords, const Value& value,
TextureInstInfo info) {
return Inst(Opcode::ImageAtomicExchange32, Flags{info}, handle, coords, value);
}
Value IREmitter::ImageSampleRaw(const Value& handle, const Value& address1, const Value& address2,
const Value& address3, const Value& address4,
TextureInstInfo info) {
return Inst(Opcode::ImageSampleRaw, Flags{info}, handle, address1, address2, address3,
address4);
}
Value IREmitter::ImageSampleImplicitLod(const Value& handle, const Value& coords, const F32& bias,
const Value& offset, TextureInstInfo info) {
return Inst(Opcode::ImageSampleImplicitLod, Flags{info}, handle, coords, bias, offset);
}
Value IREmitter::ImageSampleExplicitLod(const Value& handle, const Value& coords, const F32& lod,
const Value& offset, TextureInstInfo info) {
return Inst(Opcode::ImageSampleExplicitLod, Flags{info}, handle, coords, lod, offset);
}
Value IREmitter::ImageSampleDrefImplicitLod(const Value& handle, const Value& coords,
const F32& dref, const F32& bias, const Value& offset,
TextureInstInfo info) {
return Inst(Opcode::ImageSampleDrefImplicitLod, Flags{info}, handle, coords, dref, bias,
offset);
}
Value IREmitter::ImageSampleDrefExplicitLod(const Value& handle, const Value& coords,
const F32& dref, const F32& lod, const Value& offset,
TextureInstInfo info) {
return Inst(Opcode::ImageSampleDrefExplicitLod, Flags{info}, handle, coords, dref, lod, offset);
}
Value IREmitter::ImageGather(const Value& handle, const Value& coords, const Value& offset,
TextureInstInfo info) {
return Inst(Opcode::ImageGather, Flags{info}, handle, coords, offset);
}
Value IREmitter::ImageGatherDref(const Value& handle, const Value& coords, const Value& offset,
const F32& dref, TextureInstInfo info) {
return Inst(Opcode::ImageGatherDref, Flags{info}, handle, coords, offset, dref);
}
Value IREmitter::ImageQueryDimension(const Value& handle, const IR::U32& lod,
const IR::U1& skip_mips, TextureInstInfo info) {
return Inst(Opcode::ImageQueryDimensions, Flags{info}, handle, lod, skip_mips);
}
Value IREmitter::ImageQueryLod(const Value& handle, const Value& coords, TextureInstInfo info) {
return Inst(Opcode::ImageQueryLod, Flags{info}, handle, coords);
}
Value IREmitter::ImageGradient(const Value& handle, const Value& coords,
const Value& derivatives_dx, const Value& derivatives_dy,
const Value& offset, const F32& lod_clamp, TextureInstInfo info) {
return Inst(Opcode::ImageGradient, Flags{info}, handle, coords, derivatives_dx, derivatives_dy,
offset, lod_clamp);
}
Value IREmitter::ImageRead(const Value& handle, const Value& coords, const U32& lod,
const U32& multisampling, TextureInstInfo info) {
return Inst(Opcode::ImageRead, Flags{info}, handle, coords, lod, multisampling);
}
void IREmitter::ImageWrite(const Value& handle, const Value& coords, const U32& lod,
const U32& multisampling, const Value& color, TextureInstInfo info) {
Inst(Opcode::ImageWrite, Flags{info}, handle, coords, lod, multisampling, color);
}
[[nodiscard]] F32 IREmitter::CubeFaceIndex(const Value& cube_coords) {
return Inst<F32>(Opcode::CubeFaceIndex, cube_coords);
}
// Debug print maps to SPIRV's NonSemantic DebugPrintf instruction
// Renderdoc will hook in its own implementation of the SPIRV instruction
// Renderdoc accepts format specifiers, e.g. %u, listed here:
// https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/main/docs/debug_printf.md
//
// fmt must be a string literal (pointer is shallow copied into a Value)
// Example usage:
// ir.DebugPrint("invocation xyz: (%u, %u, %u)",
// {ir.GetVectorReg(IR::VectorReg::V0),
// ir.GetVectorReg(IR::VectorReg::V1),
// ir.GetVectorReg(IR::VectorReg::V2)});
void IREmitter::DebugPrint(const char* fmt, boost::container::small_vector<Value, 5> format_args) {
std::array<Value, DEBUGPRINT_NUM_FORMAT_ARGS> args;
ASSERT_MSG(format_args.size() < DEBUGPRINT_NUM_FORMAT_ARGS,
"DebugPrint only supports up to {} format args", DEBUGPRINT_NUM_FORMAT_ARGS);
for (int i = 0; i < format_args.size(); i++) {
args[i] = format_args[i];
}
for (int i = format_args.size(); i < DEBUGPRINT_NUM_FORMAT_ARGS; i++) {
args[i] = Inst(Opcode::Void);
}
IR::Value fmt_val{fmt};
DebugPrintFlags flags;
flags.num_args.Assign(format_args.size());
Inst(Opcode::DebugPrint, Flags{flags}, fmt_val, args[0], args[1], args[2], args[3]);
}
void IREmitter::EmitVertex() {
Inst(Opcode::EmitVertex);
}
void IREmitter::EmitPrimitive() {
Inst(Opcode::EmitPrimitive);
}
} // namespace Shader::IR