rpcs3/rpcs3/Emu/Cell/lv2/sys_sync.h
Eladash 26e731b487 LV2: Re-add dropped optimization by previous commit
Currently only for lock-free syscalls.
2022-08-07 20:23:54 +03:00

579 lines
12 KiB
C++

#pragma once
#include "Utilities/mutex.h"
#include "Utilities/sema.h"
#include "Emu/CPU/CPUThread.h"
#include "Emu/Cell/ErrorCodes.h"
#include "Emu/Cell/timers.hpp"
#include "Emu/IdManager.h"
#include "Emu/IPC.h"
#include "Emu/system_config.h"
#include <thread>
// attr_protocol (waiting scheduling policy)
enum lv2_protocol : u8
{
SYS_SYNC_FIFO = 0x1, // First In, First Out Order
SYS_SYNC_PRIORITY = 0x2, // Priority Order
SYS_SYNC_PRIORITY_INHERIT = 0x3, // Basic Priority Inheritance Protocol
SYS_SYNC_RETRY = 0x4, // Not selected while unlocking
};
enum : u32
{
SYS_SYNC_ATTR_PROTOCOL_MASK = 0xf,
};
// attr_recursive (recursive locks policy)
enum
{
SYS_SYNC_RECURSIVE = 0x10,
SYS_SYNC_NOT_RECURSIVE = 0x20,
SYS_SYNC_ATTR_RECURSIVE_MASK = 0xf0,
};
// attr_pshared (sharing among processes policy)
enum
{
SYS_SYNC_PROCESS_SHARED = 0x100,
SYS_SYNC_NOT_PROCESS_SHARED = 0x200,
SYS_SYNC_ATTR_PSHARED_MASK = 0xf00,
};
// attr_flags (creation policy)
enum
{
SYS_SYNC_NEWLY_CREATED = 0x1, // Create new object, fails if specified IPC key exists
SYS_SYNC_NOT_CREATE = 0x2, // Reference existing object, fails if IPC key not found
SYS_SYNC_NOT_CARE = 0x3, // Reference existing object, create new one if IPC key not found
SYS_SYNC_ATTR_FLAGS_MASK = 0xf,
};
// attr_adaptive
enum
{
SYS_SYNC_ADAPTIVE = 0x1000,
SYS_SYNC_NOT_ADAPTIVE = 0x2000,
SYS_SYNC_ATTR_ADAPTIVE_MASK = 0xf000,
};
enum ppu_thread_status : u32;
namespace vm
{
void temporary_unlock(cpu_thread& cpu) noexcept;
}
namespace cpu_counter
{
void remove(cpu_thread*) noexcept;
}
// Base class for some kernel objects (shared set of 8192 objects).
struct lv2_obj
{
static const u32 id_step = 0x100;
static const u32 id_count = 8192;
static constexpr std::pair<u32, u32> id_invl_range = {0, 8};
private:
enum thread_cmd : s32
{
yield_cmd = smin,
enqueue_cmd,
};
// Function executed under IDM mutex, error will make the object creation fail and the error will be returned
CellError on_id_create()
{
exists++;
return {};
}
public:
SAVESTATE_INIT_POS(4); // Dependency on PPUs
// Existence validation (workaround for shared-ptr ref-counting)
atomic_t<u32> exists = 0;
template <typename Ptr>
static bool check(Ptr&& ptr)
{
return ptr && ptr->exists;
}
static std::string name64(u64 name_u64)
{
const auto ptr = reinterpret_cast<const char*>(&name_u64);
// NTS string, ignore invalid/newline characters
// Example: "lv2\n\0tx" will be printed as "lv2"
std::string str{ptr, std::find(ptr, ptr + 7, '\0')};
str.erase(std::remove_if(str.begin(), str.end(), [](uchar c){ return !std::isprint(c); }), str.end());
return str;
}
// Find and remove the object from the linked list
template <typename T>
static T* unqueue(T*& first, T* object, T* T::* mem_ptr = &T::next_cpu)
{
auto it = +first;
if (it == object)
{
atomic_storage<T*>::release(first, it->*mem_ptr);
atomic_storage<T*>::release(it->*mem_ptr, nullptr);
return it;
}
for (; it;)
{
const auto next = it->*mem_ptr + 0;
if (next == object)
{
atomic_storage<T*>::release(it->*mem_ptr, next->*mem_ptr);
atomic_storage<T*>::release(next->*mem_ptr, nullptr);
return next;
}
it = next;
}
return {};
}
// Remove an object from the linked set according to the protocol
template <typename E, typename T>
static E* schedule(T& first, u32 protocol)
{
auto it = static_cast<E*>(first);
if (!it)
{
return it;
}
auto parent_found = &first;
if (protocol == SYS_SYNC_FIFO)
{
while (true)
{
const auto next = +it->next_cpu;
if (next)
{
parent_found = &it->next_cpu;
it = next;
continue;
}
if (it && cpu_flag::again - it->state)
{
atomic_storage<T>::release(*parent_found, nullptr);
}
return it;
}
}
s32 prio = it->prio;
auto found = it;
while (true)
{
auto& node = it->next_cpu;
const auto next = static_cast<E*>(node);
if (!next)
{
break;
}
const s32 _prio = static_cast<E*>(next)->prio;
// This condition tests for equality as well so the eraliest element to be pushed is popped
if (_prio <= prio)
{
found = next;
parent_found = &node;
prio = _prio;
}
it = next;
}
if (cpu_flag::again - found->state)
{
atomic_storage<T>::release(*parent_found, found->next_cpu);
atomic_storage<T>::release(found->next_cpu, nullptr);
}
return found;
}
template <typename T>
static void emplace(T& first, T object)
{
atomic_storage<T>::release(object->next_cpu, first);
atomic_storage<T>::release(first, object);
}
private:
// Remove the current thread from the scheduling queue, register timeout
static void sleep_unlocked(cpu_thread&, u64 timeout);
// Schedule the thread
static bool awake_unlocked(cpu_thread*, s32 prio = enqueue_cmd);
public:
static constexpr u64 max_timeout = u64{umax} / 1000;
static void sleep(cpu_thread& cpu, const u64 timeout = 0);
static bool awake(cpu_thread* thread, s32 prio = enqueue_cmd);
// Returns true on successful context switch, false otherwise
static bool yield(cpu_thread& thread);
static void set_priority(cpu_thread& thread, s32 prio)
{
ensure(prio + 512u < 3712);
awake(&thread, prio);
}
static inline void awake_all()
{
awake({});
g_to_awake.clear();
}
static ppu_thread_status ppu_state(ppu_thread* ppu, bool lock_idm = true, bool lock_lv2 = true);
static inline void append(cpu_thread* const thread)
{
g_to_awake.emplace_back(thread);
}
// Serialization related
static void set_future_sleep(cpu_thread* cpu);
static bool is_scheduler_ready();
// Must be called under IDM lock
static bool has_ppus_in_running_state();
static void cleanup();
template <typename T>
static inline u64 get_key(const T& attr)
{
return (attr.pshared == SYS_SYNC_PROCESS_SHARED ? +attr.ipc_key : 0);
}
template <typename T, typename F>
static error_code create(u32 pshared, u64 ipc_key, s32 flags, F&& make, bool key_not_zero = true)
{
switch (pshared)
{
case SYS_SYNC_PROCESS_SHARED:
{
if (key_not_zero && ipc_key == 0)
{
return CELL_EINVAL;
}
switch (flags)
{
case SYS_SYNC_NEWLY_CREATED:
case SYS_SYNC_NOT_CARE:
case SYS_SYNC_NOT_CREATE:
{
break;
}
default: return CELL_EINVAL;
}
break;
}
case SYS_SYNC_NOT_PROCESS_SHARED:
{
break;
}
default: return CELL_EINVAL;
}
// EAGAIN for IDM IDs shortage
CellError error = CELL_EAGAIN;
if (!idm::import<lv2_obj, T>([&]() -> std::shared_ptr<T>
{
std::shared_ptr<T> result = make();
auto finalize_construct = [&]() -> std::shared_ptr<T>
{
if ((error = result->on_id_create()))
{
result.reset();
}
return std::move(result);
};
if (pshared != SYS_SYNC_PROCESS_SHARED)
{
// Creation of unique (non-shared) object handle
return finalize_construct();
}
auto& ipc_container = g_fxo->get<ipc_manager<T, u64>>();
if (flags == SYS_SYNC_NOT_CREATE)
{
result = ipc_container.get(ipc_key);
if (!result)
{
error = CELL_ESRCH;
return result;
}
// Run on_id_create() on existing object
return finalize_construct();
}
bool added = false;
std::tie(added, result) = ipc_container.add(ipc_key, finalize_construct, flags != SYS_SYNC_NEWLY_CREATED);
if (!added)
{
if (flags == SYS_SYNC_NEWLY_CREATED)
{
// Object already exists but flags does not allow it
error = CELL_EEXIST;
// We specified we do not want to peek pointer's value, result must be empty
AUDIT(!result);
return result;
}
// Run on_id_create() on existing object
return finalize_construct();
}
return result;
}))
{
return error;
}
return CELL_OK;
}
template <typename T>
static void on_id_destroy(T& obj, u64 ipc_key, u64 pshared = -1)
{
if (pshared == umax)
{
// Default is to check key
pshared = ipc_key != 0;
}
if (obj.exists-- == 1u && pshared)
{
g_fxo->get<ipc_manager<T, u64>>().remove(ipc_key);
}
}
template <typename T>
static std::shared_ptr<T> load(u64 ipc_key, std::shared_ptr<T> make, u64 pshared = -1)
{
if (pshared == umax ? ipc_key != 0 : pshared != 0)
{
g_fxo->need<ipc_manager<T, u64>>();
make = g_fxo->get<ipc_manager<T, u64>>().add(ipc_key, [&]()
{
return make;
}, true).second;
}
// Ensure no error
ensure(!make->on_id_create());
return make;
}
template <bool IsUsleep = false, bool Scale = true>
static bool wait_timeout(u64 usec, cpu_thread* const cpu = {})
{
static_assert(u64{umax} / max_timeout >= 100, "max timeout is not valid for scaling");
if constexpr (Scale)
{
// Scale time
usec = std::min<u64>(usec, u64{umax} / 100) * 100 / g_cfg.core.clocks_scale;
}
// Clamp
usec = std::min<u64>(usec, max_timeout);
u64 passed = 0;
const u64 start_time = get_system_time();
auto wait_for = [cpu](u64 timeout)
{
atomic_bs_t<cpu_flag> dummy{};
auto& state = cpu ? cpu->state : dummy;
const auto old = +state;
if (old & cpu_flag::signal)
{
return true;
}
thread_ctrl::wait_on(state, old, timeout);
return false;
};
while (usec >= passed)
{
u64 remaining = usec - passed;
#ifdef __linux__
// NOTE: Assumption that timer initialization has succeeded
u64 host_min_quantum = IsUsleep && remaining <= 1000 ? 10 : 50;
#else
// Host scheduler quantum for windows (worst case)
// NOTE: On ps3 this function has very high accuracy
constexpr u64 host_min_quantum = 500;
#endif
// TODO: Tune for other non windows operating sytems
bool escape = false;
if (g_cfg.core.sleep_timers_accuracy < (IsUsleep ? sleep_timers_accuracy_level::_usleep : sleep_timers_accuracy_level::_all_timers))
{
escape = wait_for(remaining);
}
else
{
if (remaining > host_min_quantum)
{
#ifdef __linux__
// Do not wait for the last quantum to avoid loss of accuracy
escape = wait_for(remaining - ((remaining % host_min_quantum) + host_min_quantum));
#else
// Wait on multiple of min quantum for large durations to avoid overloading low thread cpus
escape = wait_for(remaining - (remaining % host_min_quantum));
#endif
}
else
{
// Try yielding. May cause long wake latency but helps weaker CPUs a lot by alleviating resource pressure
std::this_thread::yield();
}
}
if (auto cpu0 = get_current_cpu_thread(); cpu0 && cpu0->is_stopped())
{
return false;
}
if (thread_ctrl::state() == thread_state::aborting)
{
return false;
}
if (escape)
{
return false;
}
passed = get_system_time() - start_time;
}
return true;
}
static inline void notify_all()
{
for (auto cpu : g_to_notify)
{
if (!cpu)
{
g_to_notify[0] = nullptr;
g_postpone_notify_barrier = false;
return;
}
if (cpu != &g_to_notify)
{
// Note: by the time of notification the thread could have been deallocated which is why the direct function is used
// TODO: Pass a narrower mask
atomic_wait_engine::notify_one(cpu, 4, atomic_wait::default_mask<atomic_bs_t<cpu_flag>>);
}
}
}
// Can be called before the actual sleep call in order to move it out of mutex scope
static inline void prepare_for_sleep(cpu_thread& cpu)
{
vm::temporary_unlock(cpu);
cpu_counter::remove(&cpu);
}
struct notify_all_t
{
notify_all_t() noexcept
{
g_postpone_notify_barrier = true;
}
notify_all_t(const notify_all_t&) = delete;
static void cleanup()
{
for (auto& cpu : g_to_notify)
{
if (!cpu)
{
return;
}
// While IDM mutex is still locked (this function assumes so) check if the notification is still needed
if (cpu != &g_to_notify && !static_cast<const decltype(cpu_thread::state)*>(cpu)->all_of(cpu_flag::signal + cpu_flag::wait))
{
// Omit it (this is a void pointer, it can hold anything)
cpu = &g_to_notify;
}
}
}
~notify_all_t() noexcept
{
lv2_obj::notify_all();
}
};
// Scheduler mutex
static shared_mutex g_mutex;
private:
// Pending list of threads to run
static thread_local std::vector<class cpu_thread*> g_to_awake;
// Scheduler queue for active PPU threads
static class ppu_thread* g_ppu;
// Waiting for the response from
static u32 g_pending;
// Pending list of threads to notify (cpu_thread::state ptr)
static thread_local std::add_pointer_t<const void> g_to_notify[4];
// If a notify_all_t object exists locally, postpone notifications to the destructor of it (not recursive, notifies on the first destructor for safety)
static thread_local bool g_postpone_notify_barrier;
static void schedule_all();
};