openmohaa/code/renderer_gl3/tr_sky.cpp
2016-03-27 11:49:47 +02:00

995 lines
25 KiB
C++

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
Copyright (C) 2006-2011 Robert Beckebans <trebor_7@users.sourceforge.net>
This file is part of XreaL source code.
XreaL source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
XreaL source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with XreaL source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_sky.c
#include "tr_local.h"
#include "gl_shader.h"
#define SKY_SUBDIVISIONS 8
#define HALF_SKY_SUBDIVISIONS (SKY_SUBDIVISIONS/2)
static float s_cloudTexCoords[6][SKY_SUBDIVISIONS + 1][SKY_SUBDIVISIONS + 1][2];
static float s_cloudTexP[6][SKY_SUBDIVISIONS + 1][SKY_SUBDIVISIONS + 1];
/*
===================================================================================
POLYGON TO BOX SIDE PROJECTION
===================================================================================
*/
static vec3_t sky_clip[6] = {
{1, 1, 0},
{1, -1, 0},
{0, -1, 1},
{0, 1, 1},
{1, 0, 1},
{-1, 0, 1}
};
static float sky_mins[2][6], sky_maxs[2][6];
static float sky_min, sky_max;
/*
================
AddSkyPolygon
================
*/
static void AddSkyPolygon(int nump, vec3_t vecs)
{
int i, j;
vec3_t v, av;
float s, t, dv;
int axis;
float *vp;
// s = [0]/[2], t = [1]/[2]
static int vec_to_st[6][3] = {
{-2, 3, 1},
{2, 3, -1},
{1, 3, 2},
{-1, 3, -2},
{-2, -1, 3},
{-2, 1, -3}
// {-1,2,3},
// {1,2,-3}
};
// decide which face it maps to
VectorCopy(vec3_origin, v);
for(i = 0, vp = vecs; i < nump; i++, vp += 3)
{
VectorAdd(vp, v, v);
}
av[0] = fabs(v[0]);
av[1] = fabs(v[1]);
av[2] = fabs(v[2]);
if(av[0] > av[1] && av[0] > av[2])
{
if(v[0] < 0)
axis = 1;
else
axis = 0;
}
else if(av[1] > av[2] && av[1] > av[0])
{
if(v[1] < 0)
axis = 3;
else
axis = 2;
}
else
{
if(v[2] < 0)
axis = 5;
else
axis = 4;
}
// project new texture coords
for(i = 0; i < nump; i++, vecs += 3)
{
j = vec_to_st[axis][2];
if(j > 0)
dv = vecs[j - 1];
else
dv = -vecs[-j - 1];
if(dv < 0.001)
continue; // don't divide by zero
j = vec_to_st[axis][0];
if(j < 0)
s = -vecs[-j - 1] / dv;
else
s = vecs[j - 1] / dv;
j = vec_to_st[axis][1];
if(j < 0)
t = -vecs[-j - 1] / dv;
else
t = vecs[j - 1] / dv;
if(s < sky_mins[0][axis])
sky_mins[0][axis] = s;
if(t < sky_mins[1][axis])
sky_mins[1][axis] = t;
if(s > sky_maxs[0][axis])
sky_maxs[0][axis] = s;
if(t > sky_maxs[1][axis])
sky_maxs[1][axis] = t;
}
}
#define ON_EPSILON 0.1f // point on plane side epsilon
#define MAX_CLIP_VERTS 64
/*
================
ClipSkyPolygon
================
*/
static void ClipSkyPolygon(int nump, vec3_t vecs, int stage)
{
float *norm;
float *v;
qboolean front, back;
float d, e;
float dists[MAX_CLIP_VERTS];
int sides[MAX_CLIP_VERTS];
vec3_t newv[2][MAX_CLIP_VERTS];
int newc[2];
int i, j;
if(nump > MAX_CLIP_VERTS - 2)
ri.Error(ERR_DROP, "ClipSkyPolygon: MAX_CLIP_VERTS");
if(stage == 6)
{ // fully clipped, so draw it
AddSkyPolygon(nump, vecs);
return;
}
front = back = qfalse;
norm = sky_clip[stage];
for(i = 0, v = vecs; i < nump; i++, v += 3)
{
d = DotProduct(v, norm);
if(d > ON_EPSILON)
{
front = qtrue;
sides[i] = SIDE_FRONT;
}
else if(d < -ON_EPSILON)
{
back = qtrue;
sides[i] = SIDE_BACK;
}
else
sides[i] = SIDE_ON;
dists[i] = d;
}
if(!front || !back)
{ // not clipped
ClipSkyPolygon(nump, vecs, stage + 1);
return;
}
// clip it
sides[i] = sides[0];
dists[i] = dists[0];
VectorCopy(vecs, (vecs + (i * 3)));
newc[0] = newc[1] = 0;
for(i = 0, v = vecs; i < nump; i++, v += 3)
{
switch (sides[i])
{
case SIDE_FRONT:
VectorCopy(v, newv[0][newc[0]]);
newc[0]++;
break;
case SIDE_BACK:
VectorCopy(v, newv[1][newc[1]]);
newc[1]++;
break;
case SIDE_ON:
VectorCopy(v, newv[0][newc[0]]);
newc[0]++;
VectorCopy(v, newv[1][newc[1]]);
newc[1]++;
break;
}
if(sides[i] == SIDE_ON || sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i])
continue;
d = dists[i] / (dists[i] - dists[i + 1]);
for(j = 0; j < 3; j++)
{
e = v[j] + d * (v[j + 3] - v[j]);
newv[0][newc[0]][j] = e;
newv[1][newc[1]][j] = e;
}
newc[0]++;
newc[1]++;
}
// continue
ClipSkyPolygon(newc[0], newv[0][0], stage + 1);
ClipSkyPolygon(newc[1], newv[1][0], stage + 1);
}
/*
==============
ClearSkyBox
==============
*/
static void ClearSkyBox(void)
{
int i;
for(i = 0; i < 6; i++)
{
sky_mins[0][i] = sky_mins[1][i] = 9999;
sky_maxs[0][i] = sky_maxs[1][i] = -9999;
}
}
/*
================
Tess_ClipSkyPolygons
================
*/
void Tess_ClipSkyPolygons()
{
vec3_t p[5]; // need one extra point for clipping
int i, j;
ClearSkyBox();
for(i = 0; i < tess.numIndexes; i += 3)
{
for(j = 0; j < 3; j++)
{
VectorSubtract(tess.xyz[tess.indexes[i + j]], backEnd.viewParms.orientation.origin, p[j]);
}
ClipSkyPolygon(3, p[0], 0);
}
}
/*
===================================================================================
CLOUD VERTEX GENERATION
===================================================================================
*/
/*
** MakeSkyVec
**
** Parms: s, t range from -1 to 1
*/
static void MakeSkyVec(float s, float t, int axis, vec4_t outSt, vec4_t outXYZ)
{
// 1 = s, 2 = t, 3 = 2048
static int st_to_vec[6][3] = {
{3, -1, 2},
{-3, 1, 2},
{1, 3, 2},
{-1, -3, 2},
{-2, -1, 3}, // 0 degrees yaw, look straight up
{2, -1, -3} // look straight down
};
vec3_t b;
int j, k;
float boxSize;
boxSize = backEnd.viewParms.zFar / 1.75; // div sqrt(3)
b[0] = s * boxSize;
b[1] = t * boxSize;
b[2] = boxSize;
for(j = 0; j < 3; j++)
{
k = st_to_vec[axis][j];
if(k < 0)
{
outXYZ[j] = -b[-k - 1];
}
else
{
outXYZ[j] = b[k - 1];
}
}
outXYZ[3] = 1;
// avoid bilerp seam
s = (s + 1) * 0.5;
t = (t + 1) * 0.5;
if(s < sky_min)
{
s = sky_min;
}
else if(s > sky_max)
{
s = sky_max;
}
if(t < sky_min)
{
t = sky_min;
}
else if(t > sky_max)
{
t = sky_max;
}
t = 1.0 - t;
if(outSt)
{
outSt[0] = s;
outSt[1] = t;
outSt[2] = 0;
outSt[3] = 1;
}
}
//static int sky_texorder[6] = { 0, 2, 1, 3, 4, 5 };
static vec4_t s_skyPoints[SKY_SUBDIVISIONS + 1][SKY_SUBDIVISIONS + 1];
static float s_skyTexCoords[SKY_SUBDIVISIONS + 1][SKY_SUBDIVISIONS + 1][4];
/*
static void DrawSkySide(struct image_s *image, const int mins[2], const int maxs[2])
{
int s, t;
GL_SelectTexture(0);
GL_Bind(image);
for(t = mins[1] + HALF_SKY_SUBDIVISIONS; t < maxs[1] + HALF_SKY_SUBDIVISIONS; t++)
{
glBegin(GL_TRIANGLE_STRIP);
for(s = mins[0] + HALF_SKY_SUBDIVISIONS; s <= maxs[0] + HALF_SKY_SUBDIVISIONS; s++)
{
glVertexAttrib4fvARB(ATTR_INDEX_TEXCOORD0, s_skyTexCoords[t][s]);
glVertexAttrib4fvARB(ATTR_INDEX_POSITION, s_skyPoints[t][s]);
glVertexAttrib4fvARB(ATTR_INDEX_TEXCOORD0, s_skyTexCoords[t + 1][s]);
glVertexAttrib4fvARB(ATTR_INDEX_POSITION, s_skyPoints[t + 1][s]);
}
glEnd();
}
}
*/
static void FillCloudySkySide(const int mins[2], const int maxs[2], qboolean addIndexes)
{
int s, t;
int vertexStart = tess.numVertexes;
int tHeight, sWidth;
tHeight = maxs[1] - mins[1] + 1;
sWidth = maxs[0] - mins[0] + 1;
for(t = mins[1] + HALF_SKY_SUBDIVISIONS; t <= maxs[1] + HALF_SKY_SUBDIVISIONS; t++)
{
for(s = mins[0] + HALF_SKY_SUBDIVISIONS; s <= maxs[0] + HALF_SKY_SUBDIVISIONS; s++)
{
VectorAdd(s_skyPoints[t][s], backEnd.viewParms.orientation.origin, tess.xyz[tess.numVertexes]);
tess.xyz[tess.numVertexes][3] = 1;
tess.texCoords[tess.numVertexes][0] = s_skyTexCoords[t][s][0];
tess.texCoords[tess.numVertexes][1] = s_skyTexCoords[t][s][1];
tess.texCoords[tess.numVertexes][2] = 0;
tess.texCoords[tess.numVertexes][3] = 1;
tess.numVertexes++;
if(tess.numVertexes >= SHADER_MAX_VERTEXES)
{
ri.Error(ERR_DROP, "SHADER_MAX_VERTEXES hit in FillCloudySkySide()\n");
}
}
}
// only add indexes for one pass, otherwise it would draw multiple times for each pass
if(addIndexes)
{
for(t = 0; t < tHeight - 1; t++)
{
for(s = 0; s < sWidth - 1; s++)
{
tess.indexes[tess.numIndexes] = vertexStart + s + t * (sWidth);
tess.numIndexes++;
tess.indexes[tess.numIndexes] = vertexStart + s + (t + 1) * (sWidth);
tess.numIndexes++;
tess.indexes[tess.numIndexes] = vertexStart + s + 1 + t * (sWidth);
tess.numIndexes++;
tess.indexes[tess.numIndexes] = vertexStart + s + (t + 1) * (sWidth);
tess.numIndexes++;
tess.indexes[tess.numIndexes] = vertexStart + s + 1 + (t + 1) * (sWidth);
tess.numIndexes++;
tess.indexes[tess.numIndexes] = vertexStart + s + 1 + t * (sWidth);
tess.numIndexes++;
}
}
}
}
static void DrawSkyBox(shader_t * shader)
{
int i;
sky_min = 0;
sky_max = 1;
Com_Memset(s_skyTexCoords, 0, sizeof(s_skyTexCoords));
// set up for drawing
tess.multiDrawPrimitives = 0;
tess.numIndexes = 0;
tess.numVertexes = 0;
for(i = 0; i < 6; i++)
{
int sky_mins_subd[2], sky_maxs_subd[2];
int s, t;
sky_mins[0][i] = floor(sky_mins[0][i] * HALF_SKY_SUBDIVISIONS) / HALF_SKY_SUBDIVISIONS;
sky_mins[1][i] = floor(sky_mins[1][i] * HALF_SKY_SUBDIVISIONS) / HALF_SKY_SUBDIVISIONS;
sky_maxs[0][i] = ceil(sky_maxs[0][i] * HALF_SKY_SUBDIVISIONS) / HALF_SKY_SUBDIVISIONS;
sky_maxs[1][i] = ceil(sky_maxs[1][i] * HALF_SKY_SUBDIVISIONS) / HALF_SKY_SUBDIVISIONS;
if((sky_mins[0][i] >= sky_maxs[0][i]) || (sky_mins[1][i] >= sky_maxs[1][i]))
{
continue;
}
sky_mins_subd[0] = sky_mins[0][i] * HALF_SKY_SUBDIVISIONS;
sky_mins_subd[1] = sky_mins[1][i] * HALF_SKY_SUBDIVISIONS;
sky_maxs_subd[0] = sky_maxs[0][i] * HALF_SKY_SUBDIVISIONS;
sky_maxs_subd[1] = sky_maxs[1][i] * HALF_SKY_SUBDIVISIONS;
if(sky_mins_subd[0] < -HALF_SKY_SUBDIVISIONS)
sky_mins_subd[0] = -HALF_SKY_SUBDIVISIONS;
else if(sky_mins_subd[0] > HALF_SKY_SUBDIVISIONS)
sky_mins_subd[0] = HALF_SKY_SUBDIVISIONS;
if(sky_mins_subd[1] < -HALF_SKY_SUBDIVISIONS)
sky_mins_subd[1] = -HALF_SKY_SUBDIVISIONS;
else if(sky_mins_subd[1] > HALF_SKY_SUBDIVISIONS)
sky_mins_subd[1] = HALF_SKY_SUBDIVISIONS;
if(sky_maxs_subd[0] < -HALF_SKY_SUBDIVISIONS)
sky_maxs_subd[0] = -HALF_SKY_SUBDIVISIONS;
else if(sky_maxs_subd[0] > HALF_SKY_SUBDIVISIONS)
sky_maxs_subd[0] = HALF_SKY_SUBDIVISIONS;
if(sky_maxs_subd[1] < -HALF_SKY_SUBDIVISIONS)
sky_maxs_subd[1] = -HALF_SKY_SUBDIVISIONS;
else if(sky_maxs_subd[1] > HALF_SKY_SUBDIVISIONS)
sky_maxs_subd[1] = HALF_SKY_SUBDIVISIONS;
// iterate through the subdivisions
for(t = sky_mins_subd[1] + HALF_SKY_SUBDIVISIONS; t <= sky_maxs_subd[1] + HALF_SKY_SUBDIVISIONS; t++)
{
for(s = sky_mins_subd[0] + HALF_SKY_SUBDIVISIONS; s <= sky_maxs_subd[0] + HALF_SKY_SUBDIVISIONS; s++)
{
MakeSkyVec((s - HALF_SKY_SUBDIVISIONS) / (float)HALF_SKY_SUBDIVISIONS,
(t - HALF_SKY_SUBDIVISIONS) / (float)HALF_SKY_SUBDIVISIONS,
i, s_skyTexCoords[t][s], s_skyPoints[t][s]);
}
}
//DrawSkySide(shader->sky.outerbox[sky_texorder[i]], sky_mins_subd, sky_maxs_subd);
// only add indexes for first stage
FillCloudySkySide(sky_mins_subd, sky_maxs_subd, qtrue);
}
// Tr3B: FIXME analyze required vertex attribs by the current material
Tess_UpdateVBOs(0);
Tess_DrawElements();
}
static void FillCloudBox(const shader_t * shader, int stage)
{
int i;
for(i = 0; i < 6; i++)
{
int sky_mins_subd[2], sky_maxs_subd[2];
int s, t;
float MIN_T;
if(1) // FIXME? shader->sky.fullClouds )
{
MIN_T = -HALF_SKY_SUBDIVISIONS;
// still don't want to draw the bottom, even if fullClouds
if(i == 5)
continue;
}
else
{
switch (i)
{
case 0:
case 1:
case 2:
case 3:
MIN_T = -1;
break;
case 5:
// don't draw clouds beneath you
continue;
case 4: // top
default:
MIN_T = -HALF_SKY_SUBDIVISIONS;
break;
}
}
sky_mins[0][i] = floor(sky_mins[0][i] * HALF_SKY_SUBDIVISIONS) / HALF_SKY_SUBDIVISIONS;
sky_mins[1][i] = floor(sky_mins[1][i] * HALF_SKY_SUBDIVISIONS) / HALF_SKY_SUBDIVISIONS;
sky_maxs[0][i] = ceil(sky_maxs[0][i] * HALF_SKY_SUBDIVISIONS) / HALF_SKY_SUBDIVISIONS;
sky_maxs[1][i] = ceil(sky_maxs[1][i] * HALF_SKY_SUBDIVISIONS) / HALF_SKY_SUBDIVISIONS;
if((sky_mins[0][i] >= sky_maxs[0][i]) || (sky_mins[1][i] >= sky_maxs[1][i]))
{
continue;
}
sky_mins_subd[0] = Q_ftol(sky_mins[0][i] * HALF_SKY_SUBDIVISIONS);
sky_mins_subd[1] = Q_ftol(sky_mins[1][i] * HALF_SKY_SUBDIVISIONS);
sky_maxs_subd[0] = Q_ftol(sky_maxs[0][i] * HALF_SKY_SUBDIVISIONS);
sky_maxs_subd[1] = Q_ftol(sky_maxs[1][i] * HALF_SKY_SUBDIVISIONS);
if(sky_mins_subd[0] < -HALF_SKY_SUBDIVISIONS)
sky_mins_subd[0] = -HALF_SKY_SUBDIVISIONS;
else if(sky_mins_subd[0] > HALF_SKY_SUBDIVISIONS)
sky_mins_subd[0] = HALF_SKY_SUBDIVISIONS;
if(sky_mins_subd[1] < MIN_T)
sky_mins_subd[1] = MIN_T;
else if(sky_mins_subd[1] > HALF_SKY_SUBDIVISIONS)
sky_mins_subd[1] = HALF_SKY_SUBDIVISIONS;
if(sky_maxs_subd[0] < -HALF_SKY_SUBDIVISIONS)
sky_maxs_subd[0] = -HALF_SKY_SUBDIVISIONS;
else if(sky_maxs_subd[0] > HALF_SKY_SUBDIVISIONS)
sky_maxs_subd[0] = HALF_SKY_SUBDIVISIONS;
if(sky_maxs_subd[1] < MIN_T)
sky_maxs_subd[1] = MIN_T;
else if(sky_maxs_subd[1] > HALF_SKY_SUBDIVISIONS)
sky_maxs_subd[1] = HALF_SKY_SUBDIVISIONS;
// iterate through the subdivisions
for(t = sky_mins_subd[1] + HALF_SKY_SUBDIVISIONS; t <= sky_maxs_subd[1] + HALF_SKY_SUBDIVISIONS; t++)
{
for(s = sky_mins_subd[0] + HALF_SKY_SUBDIVISIONS; s <= sky_maxs_subd[0] + HALF_SKY_SUBDIVISIONS; s++)
{
MakeSkyVec((s - HALF_SKY_SUBDIVISIONS) / (float)HALF_SKY_SUBDIVISIONS,
(t - HALF_SKY_SUBDIVISIONS) / (float)HALF_SKY_SUBDIVISIONS, i, NULL, s_skyPoints[t][s]);
s_skyTexCoords[t][s][0] = s_cloudTexCoords[i][t][s][0];
s_skyTexCoords[t][s][1] = s_cloudTexCoords[i][t][s][1];
}
}
// only add indexes for first stage
FillCloudySkySide(sky_mins_subd, sky_maxs_subd, (qboolean) (stage == 0));
}
}
static void BuildCloudData()
{
int i;
shader_t *shader;
shader = tess.surfaceShader;
assert(shader->isSky);
sky_min = 1.0 / 256.0f; // FIXME: not correct?
sky_max = 255.0 / 256.0f;
// set up for drawing
tess.multiDrawPrimitives = 0;
tess.numIndexes = 0;
tess.numVertexes = 0;
if(tess.surfaceShader->sky.cloudHeight)
{
for(i = 0; i < MAX_SHADER_STAGES; i++)
{
if(!tess.surfaceStages[i])
{
break;
}
FillCloudBox(tess.surfaceShader, i);
}
}
// Tr3B: FIXME analyze required vertex attribs by the current material
Tess_UpdateVBOs(0);
}
/*
** R_InitSkyTexCoords
** Called when a sky shader is parsed
*/
void R_InitSkyTexCoords(float heightCloud)
{
int i, s, t;
float radiusWorld = 4096;
float p;
float sRad, tRad;
vec4_t skyVec;
vec3_t v;
// init zfar so MakeSkyVec works even though
// a world hasn't been bounded
backEnd.viewParms.zFar = 1024;
for(i = 0; i < 6; i++)
{
for(t = 0; t <= SKY_SUBDIVISIONS; t++)
{
for(s = 0; s <= SKY_SUBDIVISIONS; s++)
{
// compute vector from view origin to sky side integral point
MakeSkyVec((s - HALF_SKY_SUBDIVISIONS) / (float)HALF_SKY_SUBDIVISIONS,
(t - HALF_SKY_SUBDIVISIONS) / (float)HALF_SKY_SUBDIVISIONS, i, NULL, skyVec);
// compute parametric value 'p' that intersects with cloud layer
p = (1.0f / (2 * DotProduct(skyVec, skyVec))) *
(-2 * skyVec[2] * radiusWorld +
2 * sqrt(Square(skyVec[2]) * Square(radiusWorld) +
2 * Square(skyVec[0]) * radiusWorld * heightCloud +
Square(skyVec[0]) * Square(heightCloud) +
2 * Square(skyVec[1]) * radiusWorld * heightCloud +
Square(skyVec[1]) * Square(heightCloud) +
2 * Square(skyVec[2]) * radiusWorld * heightCloud + Square(skyVec[2]) * Square(heightCloud)));
s_cloudTexP[i][t][s] = p;
// compute intersection point based on p
VectorScale(skyVec, p, v);
v[2] += radiusWorld;
// compute vector from world origin to intersection point 'v'
VectorNormalize(v);
sRad = Q_acos(v[0]);
tRad = Q_acos(v[1]);
s_cloudTexCoords[i][t][s][0] = sRad;
s_cloudTexCoords[i][t][s][1] = tRad;
}
}
}
}
//======================================================================================
/*
** RB_DrawSun
*/
void RB_DrawSun(void)
{
#if 0
float size;
float dist;
vec3_t origin, vec1, vec2;
vec3_t temp;
matrix_t transformMatrix;
matrix_t modelViewMatrix;
if(!backEnd.skyRenderedThisView)
{
return;
}
if(!r_drawSun->integer)
{
return;
}
GL_PushMatrix();
GL_BindProgram(&tr.genericShader);
// set uniforms
GLSL_SetUniform_TCGen_Environment(&tr.genericShader, qfalse);
GLSL_SetUniform_InverseVertexColor(&tr.genericShader, qfalse);
if(glConfig2.vboVertexSkinningAvailable)
{
GLSL_SetUniform_VertexSkinning(&tr.genericShader, qfalse);
}
GLSL_SetUniform_DeformGen(&tr.genericShader, DGEN_NONE);
GLSL_SetUniform_AlphaTest(&tr.genericShader, -1.0);
MatrixSetupTranslation(transformMatrix, backEnd.viewParms.orientation.origin[0], backEnd.viewParms.orientation.origin[1],
backEnd.viewParms.orientation.origin[2]);
Matrix4x4Multiply(backEnd.viewParms.world.viewMatrix, transformMatrix, modelViewMatrix);
GL_LoadProjectionMatrix(backEnd.viewParms.projectionMatrix);
GL_LoadModelViewMatrix(modelViewMatrix);
GLSL_SetUniform_ModelMatrix(&tr.genericShader, backEnd.orientation.transformMatrix);
GLSL_SetUniform_ModelViewProjectionMatrix(&tr.genericShader, glState.modelViewProjectionMatrix[glState.stackIndex]);
GLSL_SetUniform_PortalClipping(&tr.genericShader, backEnd.viewParms.isPortal);
if(backEnd.viewParms.isPortal)
{
float plane[4];
// clipping plane in world space
plane[0] = backEnd.viewParms.portalPlane.normal[0];
plane[1] = backEnd.viewParms.portalPlane.normal[1];
plane[2] = backEnd.viewParms.portalPlane.normal[2];
plane[3] = backEnd.viewParms.portalPlane.dist;
GLSL_SetUniform_PortalPlane(&tr.genericShader, plane);
}
dist = backEnd.viewParms.skyFar / 1.75; // div sqrt(3)
size = dist * 0.4;
VectorScale(tr.sunDirection, dist, origin);
PerpendicularVector(vec1, tr.sunDirection);
CrossProduct(tr.sunDirection, vec1, vec2);
VectorScale(vec1, size, vec1);
VectorScale(vec2, size, vec2);
// farthest depth range
glDepthRange(1.0, 1.0);
// FIXME: use quad stamp
Tess_Begin(Tess_StageIteratorGeneric, tr.sunShader, NULL, tess.skipTangentSpaces, qfalse, -1, tess.fogNum);
VectorCopy(origin, temp);
VectorSubtract(temp, vec1, temp);
VectorSubtract(temp, vec2, temp);
VectorCopy(temp, tess.xyz[tess.numVertexes]);
tess.xyz[tess.numVertexes][3] = 1;
tess.texCoords[tess.numVertexes][0] = 0;
tess.texCoords[tess.numVertexes][1] = 0;
tess.texCoords[tess.numVertexes][2] = 0;
tess.texCoords[tess.numVertexes][3] = 1;
tess.colors[tess.numVertexes][0] = 1;
tess.colors[tess.numVertexes][1] = 1;
tess.colors[tess.numVertexes][2] = 1;
tess.numVertexes++;
VectorCopy(origin, temp);
VectorAdd(temp, vec1, temp);
VectorSubtract(temp, vec2, temp);
VectorCopy(temp, tess.xyz[tess.numVertexes]);
tess.xyz[tess.numVertexes][3] = 1;
tess.texCoords[tess.numVertexes][0] = 0;
tess.texCoords[tess.numVertexes][1] = 1;
tess.texCoords[tess.numVertexes][2] = 0;
tess.texCoords[tess.numVertexes][3] = 1;
tess.colors[tess.numVertexes][0] = 1;
tess.colors[tess.numVertexes][1] = 1;
tess.colors[tess.numVertexes][2] = 1;
tess.numVertexes++;
VectorCopy(origin, temp);
VectorAdd(temp, vec1, temp);
VectorAdd(temp, vec2, temp);
VectorCopy(temp, tess.xyz[tess.numVertexes]);
tess.xyz[tess.numVertexes][3] = 1;
tess.texCoords[tess.numVertexes][0] = 1;
tess.texCoords[tess.numVertexes][1] = 1;
tess.texCoords[tess.numVertexes][2] = 0;
tess.texCoords[tess.numVertexes][3] = 1;
tess.colors[tess.numVertexes][0] = 1;
tess.colors[tess.numVertexes][1] = 1;
tess.colors[tess.numVertexes][2] = 1;
tess.numVertexes++;
VectorCopy(origin, temp);
VectorSubtract(temp, vec1, temp);
VectorAdd(temp, vec2, temp);
VectorCopy(temp, tess.xyz[tess.numVertexes]);
tess.xyz[tess.numVertexes][3] = 1;
tess.texCoords[tess.numVertexes][0] = 1;
tess.texCoords[tess.numVertexes][1] = 0;
tess.texCoords[tess.numVertexes][2] = 0;
tess.texCoords[tess.numVertexes][3] = 1;
tess.colors[tess.numVertexes][0] = 1;
tess.colors[tess.numVertexes][1] = 1;
tess.colors[tess.numVertexes][2] = 1;
tess.numVertexes++;
tess.indexes[tess.numIndexes++] = 0;
tess.indexes[tess.numIndexes++] = 1;
tess.indexes[tess.numIndexes++] = 2;
tess.indexes[tess.numIndexes++] = 0;
tess.indexes[tess.numIndexes++] = 2;
tess.indexes[tess.numIndexes++] = 3;
Tess_End();
// back to normal depth range
glDepthRange(0.0, 1.0);
GL_PopMatrix();
#endif
}
/*
================
Tess_StageIteratorSky
All of the visible sky triangles are in tess
Other things could be stuck in here, like birds in the sky, etc
================
*/
void Tess_StageIteratorSky(void)
{
#if !defined(USE_D3D10)
// log this call
if(r_logFile->integer)
{
// don't just call LogComment, or we will get
// a call to va() every frame!
GLimp_LogComment(va
("--- Tess_StageIteratorSky( %s, %i vertices, %i triangles ) ---\n", tess.surfaceShader->name,
tess.numVertexes, tess.numIndexes / 3));
}
if(r_fastsky->integer)
{
return;
}
// trebor: HACK why does this happen with cg_draw2D 0 ?
if(tess.stageIteratorFunc2 == NULL)
{
//tess.stageIteratorFunc2 = Tess_StageIteratorGeneric;
ri.Error(ERR_FATAL, "tess.stageIteratorFunc == NULL");
}
if(tess.stageIteratorFunc2 == &Tess_StageIteratorDepthFill)
{
// go through all the polygons and project them onto
// the sky box to see which blocks on each side need
// to be drawn
Tess_ClipSkyPolygons();
// generate the vertexes for all the clouds, which will be drawn
// by the generic shader routine
BuildCloudData();
if(tess.numVertexes || tess.multiDrawPrimitives)
tess.stageIteratorFunc2();
}
else
{
if(tess.stageIteratorFunc2 == &Tess_StageIteratorGBuffer)
{
R_BindFBO(tr.geometricRenderFBO);
}
// go through all the polygons and project them onto
// the sky box to see which blocks on each side need
// to be drawn
Tess_ClipSkyPolygons();
// r_showSky will let all the sky blocks be drawn in
// front of everything to allow developers to see how
// much sky is getting sucked in
if(r_showSky->integer)
{
glDepthRange(0.0, 0.0);
}
else
{
glDepthRange(1.0, 1.0);
}
// draw the outer skybox
if(tess.surfaceShader->sky.outerbox && tess.surfaceShader->sky.outerbox != tr.blackCubeImage)
{
#if 1
R_BindVBO(tess.vbo);
R_BindIBO(tess.ibo);
gl_skyboxShader->SetPortalClipping(backEnd.viewParms.isPortal);
gl_skyboxShader->BindProgram();
gl_skyboxShader->SetUniform_ViewOrigin(backEnd.viewParms.orientation.origin); // in world space
gl_skyboxShader->SetUniform_ModelMatrix(backEnd.orientation.transformMatrix);
gl_skyboxShader->SetUniform_ModelViewProjectionMatrix(glState.modelViewProjectionMatrix[glState.stackIndex]);
// u_PortalPlane
if(backEnd.viewParms.isPortal)
{
float plane[4];
// clipping plane in world space
plane[0] = backEnd.viewParms.portalPlane.normal[0];
plane[1] = backEnd.viewParms.portalPlane.normal[1];
plane[2] = backEnd.viewParms.portalPlane.normal[2];
plane[3] = backEnd.viewParms.portalPlane.dist;
gl_skyboxShader->SetUniform_PortalPlane(plane);
}
gl_skyboxShader->SetRequiredVertexPointers();
// bind u_ColorMap
GL_SelectTexture(0);
GL_Bind(tess.surfaceShader->sky.outerbox);
DrawSkyBox(tess.surfaceShader);
#endif
}
// generate the vertexes for all the clouds, which will be drawn
// by the generic shader routine
BuildCloudData();
if(tess.numVertexes || tess.multiDrawPrimitives)
tess.stageIteratorFunc2();
// Tr3B: TODO draw the inner skybox?
if(tess.stageIteratorFunc2 == Tess_StageIteratorGBuffer)
{
R_BindNullFBO();
}
if(tess.stageIteratorFunc2 != Tess_StageIteratorDepthFill)
{
// back to normal depth range
glDepthRange(0.0, 1.0);
// note that sky was drawn so we will draw a sun later
backEnd.skyRenderedThisView = qtrue;
}
}
#endif
}