openmohaa/code/fgame/bspline.cpp
2023-06-15 23:44:02 +02:00

963 lines
16 KiB
C++

/*
===========================================================================
Copyright (C) 2015 the OpenMoHAA team
This file is part of OpenMoHAA source code.
OpenMoHAA source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
OpenMoHAA source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenMoHAA source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// bspline.cpp: Uniform non-rational bspline class.
//
#include "g_local.h"
#include "bspline.h"
#include "game.h"
#include "debuglines.h"
#include "g_phys.h"
#include "scriptexception.h"
void BSpline::Set
(
Vector *control_points_,
int num_control_points_,
splinetype_t type
)
{
int i;
SetType( type );
has_orientation = false;
if ( control_points )
{
delete [] control_points;
control_points = NULL;
}
num_control_points = num_control_points_;
if ( num_control_points )
{
control_points = new BSplineControlPoint[ num_control_points ];
assert( control_points );
for( i = 0; i < num_control_points; i++ )
{
control_points[ i ].Set( control_points_[ i ] );
}
}
}
void BSpline::Set
(
Vector *control_points_,
Vector *control_orients_,
float *control_speeds_,
int num_control_points_,
splinetype_t type
)
{
int i;
SetType( type );
has_orientation = true;
if ( control_points )
{
delete [] control_points;
control_points = NULL;
}
num_control_points = num_control_points_;
if ( num_control_points )
{
control_points = new BSplineControlPoint[ num_control_points ];
assert( control_points );
for( i = 0; i < num_control_points; i++ )
{
control_points[ i ].Set( control_points_[ i ], control_orients_[ i ], control_speeds_[ i ] );
}
}
}
void BSpline::Clear
(
void
)
{
if( control_points )
{
delete [] control_points;
control_points = NULL;
}
num_control_points = 0;
has_orientation = false;
}
inline float BSpline::EvalNormal
(
float u,
Vector& pos,
Vector& orient
)
{
int segment_id;
float B[ 4 ];
float tmp;
float u_2;
float u_3;
Vector ang;
float roll;
float speed;
segment_id = ( int )u;
if ( segment_id < 0 )
{
segment_id = 0;
}
if ( segment_id > num_control_points - 4 )
{
segment_id = num_control_points - 4;
}
u -= ( float )segment_id;
u_2 = u * u;
u_3 = u * u_2;
tmp = 1 - u;
B[ 0 ] = ( tmp * tmp * tmp ) * ( 1.0f / 6.0f );
B[ 1 ] = ( 3.0f * u_3 - 6.0f * u_2 + 4.0f ) * ( 1.0f / 6.0f );
B[ 2 ] = ( -3.0f * u_3 + 3.0f * u_2 + 3.0f * u + 1 ) * ( 1.0f / 6.0f );
B[ 3 ] = u_3 * ( 1.0f / 6.0f );
pos =
*control_points[ 0 + segment_id ].GetPosition() * B[ 0 ] +
*control_points[ 1 + segment_id ].GetPosition() * B[ 1 ] +
*control_points[ 2 + segment_id ].GetPosition() * B[ 2 ] +
*control_points[ 3 + segment_id ].GetPosition() * B[ 3 ];
ang =
*control_points[ 0 + segment_id ].GetOrientation() * B[ 0 ] +
*control_points[ 1 + segment_id ].GetOrientation() * B[ 1 ] +
*control_points[ 2 + segment_id ].GetOrientation() * B[ 2 ] +
*control_points[ 3 + segment_id ].GetOrientation() * B[ 3 ];
roll =
*control_points[ 0 + segment_id ].GetRoll() * B[ 0 ] +
*control_points[ 1 + segment_id ].GetRoll() * B[ 1 ] +
*control_points[ 2 + segment_id ].GetRoll() * B[ 2 ] +
*control_points[ 3 + segment_id ].GetRoll() * B[ 3 ];
speed =
*control_points[ 0 + segment_id ].GetSpeed() * B[ 0 ] +
*control_points[ 1 + segment_id ].GetSpeed() * B[ 1 ] +
*control_points[ 2 + segment_id ].GetSpeed() * B[ 2 ] +
*control_points[ 3 + segment_id ].GetSpeed() * B[ 3 ];
orient = ang.toAngles();
orient[ ROLL ] = roll;
return speed;
}
inline float BSpline::EvalLoop
(
float t,
Vector& pos,
Vector& orient
)
{
Vector retval;
Vector ang;
float speed;
float roll;
int segment_id;
int next_id;
float B[ 4 ];
float tmp;
float u;
float u_2;
float u_3;
int i;
int j;
segment_id = ( int )floor( t );
u = t - floor( t );
segment_id %= num_control_points;
if ( segment_id < 0 )
{
segment_id += num_control_points;
}
u_2 = u * u;
u_3 = u * u_2;
tmp = 1 - u;
B[ 0 ] = ( tmp * tmp * tmp ) * ( 1.0f / 6.0f );
B[ 1 ] = ( 3.0f * u_3 - 6.0f * u_2 + 4.0f ) * ( 1.0f / 6.0f );
B[ 2 ] = ( -3.0f * u_3 + 3.0f * u_2 + 3.0f * u + 1 ) * ( 1.0f / 6.0f );
B[ 3 ] = u_3 * ( 1.0f / 6.0f );
speed = 0;
roll = 0;
for( i = 0, j = segment_id; i < 4; i++, j++ )
{
if ( j >= num_control_points )
{
j -= ( num_control_points - loop_control_point );
}
retval += *control_points[ j ].GetPosition() * B[ i ];
ang += *control_points[ j ].GetOrientation() * B[ i ];
speed += *control_points[ j ].GetSpeed() * B[ i ];
roll += *control_points[ j ].GetRoll() * B[ i ];
}
pos = retval;
next_id = segment_id + 1;
if ( next_id >= num_control_points )
{
next_id -= ( num_control_points - loop_control_point );
}
orient = ang.toAngles();
orient[ ROLL ] = roll;
return speed;
}
inline float BSpline::EvalClamp
(
float t,
Vector& pos,
Vector& orient
)
{
Vector retval;
Vector ang;
int segment_id;
int next_id;
float B[ 4 ];
float tmp;
float u;
float u_2;
float u_3;
int i;
int j;
float speed;
float roll;
segment_id = ( int )floor( t );
u = t - floor( t );
u_2 = u * u;
u_3 = u * u_2;
tmp = 1 - u;
B[ 0 ] = ( tmp * tmp * tmp ) * ( 1.0f / 6.0f );
B[ 1 ] = ( 3.0f * u_3 - 6.0f * u_2 + 4.0f ) * ( 1.0f / 6.0f );
B[ 2 ] = ( -3.0f * u_3 + 3.0f * u_2 + 3.0f * u + 1 ) * ( 1.0f / 6.0f );
B[ 3 ] = u_3 * ( 1.0f / 6.0f );
speed = 0;
roll = 0;
for( i = 0; i < 4; i++, segment_id++ )
{
j = segment_id;
if ( j < 0 )
{
j = 0;
}
else if ( j >= num_control_points )
{
j = num_control_points - 1;
}
retval += *control_points[ j ].GetPosition() * B[ i ];
ang += *control_points[ j ].GetOrientation() * B[ i ];
speed += *control_points[ j ].GetSpeed() * B[ i ];
roll += *control_points[ j ].GetRoll() * B[ i ];
}
pos = retval;
next_id = segment_id + 1;
if ( segment_id < 0 )
{
segment_id = 0;
}
if ( segment_id >= num_control_points )
{
segment_id = num_control_points - 1;
}
if ( next_id < 0 )
{
next_id = 0;
}
if ( next_id >= num_control_points )
{
next_id = num_control_points - 1;
}
orient = ang.toAngles();
orient[ ROLL ] = roll;
return speed;
}
Vector BSpline::Eval
(
float u
)
{
Vector pos;
Vector orient;
switch( curvetype )
{
default:
case SPLINE_NORMAL :
EvalNormal( u, pos, orient );
break;
case SPLINE_CLAMP:
EvalClamp( u, pos, orient );
break;
case SPLINE_LOOP:
if ( u < 0 )
{
EvalClamp( u, pos, orient );
}
else
{
EvalLoop( u, pos, orient );
}
break;
}
return pos;
}
float BSpline::Eval
(
float u,
Vector &pos,
Vector &orient
)
{
switch( curvetype )
{
default:
case SPLINE_NORMAL :
return EvalNormal( u, pos, orient );
break;
case SPLINE_CLAMP:
return EvalClamp( u, pos, orient );
break;
case SPLINE_LOOP:
if ( u < 0 )
{
return EvalClamp( u, pos, orient );
}
else
{
return EvalLoop( u, pos, orient );
}
break;
}
}
void BSpline::DrawControlSegments
(
void
)
{
int i;
G_BeginLine();
for( i = 0; i < num_control_points; i++ )
{
G_Vertex( *control_points[ i ].GetPosition() );
}
G_EndLine();
}
void BSpline::DrawCurve
(
int num_subdivisions
)
{
float u;
float du;
if ( !num_control_points )
{
return;
}
du = 1.0f / ( float )num_subdivisions;
G_BeginLine();
for( u = -2.0f; u <= ( float )num_control_points; u += du )
{
G_Vertex( ( Vector )Eval( u ) );
}
G_EndLine();
}
void BSpline::DrawCurve
(
Vector offset,
int num_subdivisions
)
{
float u;
float du;
du = 1.0f / ( float )num_subdivisions;
G_BeginLine();
for( u = -2.0f; u <= ( float )num_control_points; u += du )
{
G_Vertex( offset + ( Vector )Eval( u ) );
}
G_EndLine();
}
void BSpline::AppendControlPoint
(
const Vector& new_control_point
)
{
BSplineControlPoint *old_control_points;
int i;
old_control_points = control_points;
num_control_points++;
control_points = new BSplineControlPoint[num_control_points];
assert( control_points );
if ( old_control_points )
{
for( i = 0; i < num_control_points - 1; i++ )
{
control_points[ i ] = old_control_points[ i ];
}
delete [] old_control_points;
}
control_points[ num_control_points - 1 ].Set( new_control_point );
}
void BSpline::AppendControlPoint
(
const Vector& new_control_point,
const float& speed
)
{
BSplineControlPoint *old_control_points;
int i;
old_control_points = control_points;
num_control_points++;
control_points = new BSplineControlPoint[num_control_points];
assert( control_points );
if ( old_control_points )
{
for( i = 0; i < num_control_points - 1; i++ )
{
control_points[ i ] = old_control_points[ i ];
}
delete [] old_control_points;
}
control_points[ num_control_points - 1 ].Set( new_control_point, speed );
}
void BSpline::AppendControlPoint
(
const Vector& new_control_point,
const Vector& new_control_orient,
const float& new_control_speed
)
{
BSplineControlPoint *old_control_points;
int i;
has_orientation = true;
old_control_points = control_points;
num_control_points++;
control_points = new BSplineControlPoint[num_control_points];
assert( control_points );
if ( old_control_points )
{
for( i = 0; i < num_control_points - 1; i++ )
{
control_points[ i ] = old_control_points[ i ];
}
delete [] old_control_points;
}
control_points[ num_control_points - 1 ].Set( new_control_point, new_control_orient, new_control_speed );
}
void BSpline::SetLoopPoint
(
const Vector& pos
)
{
int i;
for( i = 0; i < num_control_points; i++ )
{
if ( pos == *control_points[ i ].GetPosition() )
{
loop_control_point = i;
break;
}
}
}
int BSpline::PickControlPoint
(
const Vector& window_point,
float pick_size
)
{
int i;
float closest_dist_2;
int closest_index;
float dist_2;
Vector delta;
closest_index = -1;
closest_dist_2 = 1000000.0f;
for( i = 0; i < num_control_points; i++ )
{
delta = window_point - *control_points[ i ].GetPosition();
dist_2 = delta * delta;
if ( dist_2 < closest_dist_2 )
{
closest_dist_2 = dist_2;
closest_index = i;
}
}
if ( pick_size * pick_size >= closest_dist_2 )
{
return closest_index;
}
else
{
return -1;
}
}
Event EV_SplinePath_Create
(
"SplinePath_create",
EV_DEFAULT,
NULL,
NULL,
"Creates the spline path from the target list.",
EV_NORMAL
);
Event EV_SplinePath_Loop
(
"loop",
EV_CONSOLE,
"s",
"loop_name",
"Sets the loop name.",
EV_NORMAL
);
Event EV_SplinePath_Speed
(
"speed",
EV_DEFAULT,
"f",
"speed",
"Sets the path speed.",
EV_NORMAL
);
Event EV_SplinePath_SetTriggerTarget
(
"triggertarget",
EV_DEFAULT,
"s",
"target",
"Sets the trigger target.",
EV_NORMAL
);
Event EV_SplinePath_SetWatch
(
"watch",
EV_CONSOLE,
"s",
"watchEntity",
"Sets the entity to watch at this node.",
EV_NORMAL
);
Event EV_SplinePath_SetFov
(
"fov",
EV_CONSOLE,
"f",
"cameraFOV",
"Sets the fov at this node.",
EV_NORMAL
);
Event EV_SplinePath_SetFadeTime
(
"fadetime",
EV_DEFAULT,
"f",
"fadeTime",
"Sets the fadetime at this node.",
EV_NORMAL
);
CLASS_DECLARATION( Entity, SplinePath, "info_splinepath" )
{
{ &EV_SplinePath_Create, &SplinePath::CreatePath },
{ &EV_SplinePath_Loop, &SplinePath::SetLoop },
{ &EV_SplinePath_Speed, &SplinePath::SetSpeed },
{ &EV_SplinePath_SetTriggerTarget, &SplinePath::SetTriggerTarget },
{ &EV_SplinePath_SetWatch, &SplinePath::SetWatch },
{ &EV_SplinePath_SetFov, &SplinePath::SetFov },
{ &EV_SplinePath_SetFadeTime, &SplinePath::SetFadeTime },
{ NULL, NULL }
};
SplinePath::SplinePath()
{
entflags |= EF_SPLINEPATH;
AddWaitTill(STRING_REACH);
owner = this;
next = NULL;
loop = NULL;
speed = 1;
doWatch = false;
watchEnt = "";
fov = 0;
fadeTime = -1;
setMoveType( MOVETYPE_NONE );
setSolidType( SOLID_NOT );
hideModel();
if( !LoadingSavegame )
{
PostEvent( EV_SplinePath_Create, FRAMETIME );
}
}
SplinePath::~SplinePath()
{
// disconnect from the chain
if ( owner != this )
{
owner->SetNext( next );
}
else if ( next )
{
next->SetPrev( NULL );
next = NULL;
}
assert( owner == this );
assert( next == NULL );
}
void SplinePath::SetLoop
(
Event *ev
)
{
loop_name = ev->GetString( 1 );
}
void SplinePath::SetSpeed
(
Event *ev
)
{
speed = ev->GetFloat( 1 );
}
void SplinePath::SetTriggerTarget
(
Event *ev
)
{
SetTriggerTarget( ev->GetString( 1 ) );
}
void SplinePath::CreatePath
(
Event *ev
)
{
const char *target;
Entity *ent;
// Make the path from the targetlist.
target = Target();
if ( target[ 0 ] )
{
ent = ( Entity * )G_FindTarget( NULL, target );
if ( ent )
{
next = ( SplinePath * )ent;
next->owner = this;
}
else
{
ScriptError( "SplinePath::CreatePath: target %s not found\n", target );
}
}
if ( loop_name.length() )
{
ent = ( Entity * )G_FindTarget( NULL, loop_name.c_str() );
if ( ent )
{
loop = ( SplinePath * )ent;
}
}
}
SplinePath *SplinePath::GetNext
(
void
)
{
return next;
}
SplinePath *SplinePath::GetPrev
(
void
)
{
if ( owner == this )
{
return NULL;
}
return owner;
}
void SplinePath::SetNext
(
SplinePath *node
)
{
if ( next )
{
// remove ourselves from the chain
next->owner = next;
}
next = node;
if ( next )
{
// disconnect next from it's previous node
if ( next->owner != next )
{
next->owner->next = NULL;
}
next->owner = this;
}
}
void SplinePath::SetPrev
(
SplinePath *node
)
{
if ( owner != this )
{
owner->next = NULL;
}
if ( node && ( node != this ) )
{
// safely remove the node from its chain
if ( node->next )
{
node->next->owner = node->next;
}
node->next = this;
owner = node;
}
else
{
owner = this;
}
}
SplinePath *SplinePath::GetLoop
(
void
)
{
return loop;
}
void SplinePath::SetWatch
(
const char *name
)
{
if ( watchEnt != name )
{
watchEnt = name;
if ( watchEnt.length() )
{
doWatch = true;
}
else
{
doWatch = false;
}
}
}
void SplinePath::SetWatch
(
Event *ev
)
{
SetWatch( ev->GetString( 1 ) );
}
void SplinePath::NoWatch
(
void
)
{
doWatch = true;
watchEnt = "none";
}
str SplinePath::GetWatch
(
void
)
{
return watchEnt;
}
void SplinePath::SetFov
(
float newFov
)
{
fov = newFov;
}
void SplinePath::SetFov
(
Event *ev
)
{
fov = ev->GetFloat( 1 );
}
float SplinePath::GetFov
(
void
)
{
return fov;
}
void SplinePath::SetFadeTime
(
float newFadeTime
)
{
fadeTime = newFadeTime;
}
void SplinePath::SetFadeTime
(
Event *ev
)
{
fadeTime = ev->GetFloat( 1 );
}
float SplinePath::GetFadeTime
(
void
)
{
return fadeTime;
}