openmohaa/code/renderergl1/tr_world.c
smallmodel 28bdd1b2b3
Made the renderer modular and loadable
This removes coupling between the renderer and UI/client functions. An option USE_RENDERER_DLOPEN was added to specify whether a renderer module should be compiled and loaded, instead of integrating the renderer into the executable directly. This opens the door for a new renderer
2024-12-06 00:15:19 +01:00

914 lines
20 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Foobar; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
#include "tr_local.h"
/*
=================
R_CullTriSurf
Returns true if the grid is completely culled away.
Also sets the clipped hint bit in tess
=================
*/
static qboolean R_CullTriSurf( srfTriangles_t *cv ) {
int boxCull;
boxCull = R_CullLocalBox( cv->bounds );
if ( boxCull == CULL_OUT ) {
return qtrue;
}
return qfalse;
}
/*
=================
R_CullGrid
Returns true if the grid is completely culled away.
Also sets the clipped hint bit in tess
=================
*/
static qboolean R_CullGrid( srfGridMesh_t *cv ) {
int boxCull;
int sphereCull;
if ( r_nocurves->integer ) {
return qtrue;
}
if (!tr.refdef.render_terrain) {
return qtrue;
}
if ( tr.currentEntityNum != ENTITYNUM_WORLD ) {
sphereCull = R_CullLocalPointAndRadius( cv->localOrigin, cv->meshRadius );
} else {
sphereCull = R_CullPointAndRadius( cv->localOrigin, cv->meshRadius );
}
boxCull = CULL_OUT;
// check for trivial reject
if ( sphereCull == CULL_OUT )
{
tr.pc.c_sphere_cull_patch_out++;
return qtrue;
}
// check bounding box if necessary
else if ( sphereCull == CULL_CLIP )
{
tr.pc.c_sphere_cull_patch_clip++;
boxCull = R_CullLocalBox( cv->meshBounds );
if ( boxCull == CULL_OUT )
{
tr.pc.c_box_cull_patch_out++;
return qtrue;
}
else if ( boxCull == CULL_IN )
{
tr.pc.c_box_cull_patch_in++;
}
else
{
tr.pc.c_box_cull_patch_clip++;
}
}
else
{
tr.pc.c_sphere_cull_patch_in++;
}
return qfalse;
}
/*
================
R_CullSurface
Tries to back face cull surfaces before they are lighted or
added to the sorting list.
This will also allow mirrors on both sides of a model without recursion.
================
*/
static qboolean R_CullSurface( surfaceType_t *surface, shader_t *shader ) {
srfSurfaceFace_t *sface;
float d;
if ( r_nocull->integer ) {
return qfalse;
}
if ( *surface == SF_GRID ) {
return R_CullGrid( (srfGridMesh_t *)surface );
}
if ( *surface == SF_TRIANGLES ) {
return R_CullTriSurf( (srfTriangles_t *)surface );
}
if ( *surface != SF_FACE ) {
return qfalse;
}
if ( shader->cullType == CT_TWO_SIDED ) {
return qfalse;
}
// face culling
if ( !r_facePlaneCull->integer ) {
return qfalse;
}
sface = ( srfSurfaceFace_t * ) surface;
d = DotProduct (tr.ori.viewOrigin, sface->plane.normal);
// don't cull exactly on the plane, because there are levels of rounding
// through the BSP, ICD, and hardware that may cause pixel gaps if an
// epsilon isn't allowed here
if ( shader->cullType == CT_FRONT_SIDED ) {
if ( d < sface->plane.dist - 8 ) {
return qtrue;
}
} else {
if ( d > sface->plane.dist + 8 ) {
return qtrue;
}
}
return qfalse;
}
/*
======================
R_FastDlightFace
======================
*/
static int R_FastDlightFace( srfSurfaceFace_t *face, int dlightBits ) {
float d;
int i;
dlight_t *dl;
for ( i = 0 ; i < tr.refdef.num_dlights ; i++ ) {
if ( ! ( dlightBits & ( 1 << i ) ) ) {
continue;
}
dl = &tr.refdef.dlights[i];
d = DotProduct( dl->transformed, face->plane.normal ) - face->plane.dist;
if ( d < -dl->radius || d > dl->radius ) {
// dlight doesn't reach the plane
dlightBits &= ~( 1 << i );
}
}
if ( !dlightBits ) {
tr.pc.c_dlightSurfacesCulled++;
}
face->dlightBits[ tr.smpFrame ] = dlightBits;
return dlightBits;
}
/*
======================
R_FastDlightGrid
======================
*/
static int R_FastDlightGrid( srfGridMesh_t *grid, int dlightBits ) {
int i;
dlight_t *dl;
for ( i = 0 ; i < tr.refdef.num_dlights ; i++ ) {
if ( ! ( dlightBits & ( 1 << i ) ) ) {
continue;
}
dl = &tr.refdef.dlights[i];
if ( dl->origin[0] - dl->radius > grid->meshBounds[1][0]
|| dl->origin[0] + dl->radius < grid->meshBounds[0][0]
|| dl->origin[1] - dl->radius > grid->meshBounds[1][1]
|| dl->origin[1] + dl->radius < grid->meshBounds[0][1]
|| dl->origin[2] - dl->radius > grid->meshBounds[1][2]
|| dl->origin[2] + dl->radius < grid->meshBounds[0][2] ) {
// dlight doesn't reach the bounds
dlightBits &= ~( 1 << i );
}
}
if ( !dlightBits ) {
tr.pc.c_dlightSurfacesCulled++;
}
grid->dlightBits[ tr.smpFrame ] = dlightBits;
return dlightBits;
}
/*
======================
R_FastDlightTerrain
======================
*/
static int R_FastDlightTerrain(cTerraPatchUnpacked_t* srf, int dlightBits) {
dlight_t* dl;
float* origin;
int i;
for (i = 0; i < tr.refdef.num_dlights; i++) {
dl = &tr.refdef.dlights[i];
origin = dl->transformed;
if (srf->x0 - origin[0] > dl->radius
|| srf->x0 - origin[0] < -512.0 - dl->radius
|| srf->y0 - origin[1] > dl->radius
|| srf->y0 - origin[1] < -512.0 - dl->radius
|| srf->z0 - origin[2] > dl->radius
|| srf->z0 - origin[2] < -srf->zmax - dl->radius
) {
// dlight doesn't reach the bounds
dlightBits &= ~(1 << i);
}
}
if (!dlightBits) {
tr.pc.c_dlightSurfacesCulled++;
}
srf->drawinfo.dlightBits[tr.smpFrame] = dlightBits;
return dlightBits;
}
/*
======================
R_DlightTrisurf
======================
*/
static int R_DlightTrisurf( srfTriangles_t *surf, int dlightBits ) {
// FIXME: more dlight culling to trisurfs...
surf->dlightBits[ tr.smpFrame ] = dlightBits;
return dlightBits;
#if 0
int i;
dlight_t *dl;
for ( i = 0 ; i < tr.refdef.num_dlights ; i++ ) {
if ( ! ( dlightBits & ( 1 << i ) ) ) {
continue;
}
dl = &tr.refdef.dlights[i];
if ( dl->origin[0] - dl->radius > grid->meshBounds[1][0]
|| dl->origin[0] + dl->radius < grid->meshBounds[0][0]
|| dl->origin[1] - dl->radius > grid->meshBounds[1][1]
|| dl->origin[1] + dl->radius < grid->meshBounds[0][1]
|| dl->origin[2] - dl->radius > grid->meshBounds[1][2]
|| dl->origin[2] + dl->radius < grid->meshBounds[0][2] ) {
// dlight doesn't reach the bounds
dlightBits &= ~( 1 << i );
}
}
if ( !dlightBits ) {
tr.pc.c_dlightSurfacesCulled++;
}
grid->dlightBits[ tr.smpFrame ] = dlightBits;
return dlightBits;
#endif
}
/*
====================
R_DlightSurface
The given surface is going to be drawn, and it touches a leaf
that is touched by one or more dlights, so try to throw out
more dlights if possible.
====================
*/
static int R_DlightSurface( msurface_t *surf, int dlightBits ) {
int dlightMap;
dlightMap = 0;
if ( *surf->data == SF_FACE ) {
if (!r_fastdlights->integer) {
if (surf->shader->lightmapIndex >= 0) {
dlightMap = R_RealDlightFace((srfSurfaceFace_t*)surf->data, dlightBits);
} else {
((srfSurfaceFace_t*)surf->data)->dlightMap[tr.smpFrame] = 0;
dlightMap = 0;
}
return dlightMap;
} else {
dlightBits = R_FastDlightFace((srfSurfaceFace_t*)surf->data, dlightBits);
}
} else if ( *surf->data == SF_GRID ) {
if (!r_fastdlights->integer) {
if (surf->shader->lightmapIndex >= 0) {
dlightMap = R_RealDlightPatch((srfGridMesh_t*)surf->data, dlightBits);
} else {
((srfGridMesh_t*)surf->data)->dlightMap[tr.smpFrame] = 0.f;
dlightMap = 0;
}
return dlightMap;
} else {
dlightBits = R_FastDlightGrid((srfGridMesh_t*)surf->data, dlightBits);
}
} else {
return dlightMap;
}
if (dlightBits) {
tr.pc.c_dlightSurfaces++;
return 1;
}
return dlightMap;
}
/*
======================
R_DlightTerrain
======================
*/
int R_DlightTerrain(cTerraPatchUnpacked_t* surf, int dlightBits)
{
int dlightMap;
dlightMap = 0;
if (r_fastdlights->integer)
{
if (R_FastDlightTerrain(surf, dlightBits)) {
++tr.pc.c_dlightSurfaces;
dlightMap = 1;
}
} else if (surf->shader->lightmapIndex < 0) {
surf->drawinfo.dlightMap[tr.smpFrame] = 0;
} else {
dlightMap = R_RealDlightTerrain(surf, dlightBits);
}
return dlightMap;
}
/*
======================
R_CheckDlightSurface
======================
*/
static int R_CheckDlightSurface(msurface_t* surf, int dlightBits)
{
if (dlightBits && surf->frameCount != tr.frameCount)
{
surf->frameCount = tr.frameCount;
return R_DlightSurface(surf, dlightBits);
}
if (dlightBits)
{
//
// Added in 2.0
// Return the existing dlight map
if (*surf->data == SF_FACE)
{
return ((srfSurfaceFace_t*)surf->data)->dlightMap[tr.smpFrame];
}
else if (*surf->data == SF_GRID)
{
return ((srfGridMesh_t*)surf->data)->dlightMap[tr.smpFrame];
}
}
else
{
if (*surf->data == SF_FACE)
{
((srfSurfaceFace_t*)surf->data)->dlightMap[tr.smpFrame] = 0;
((srfSurfaceFace_t*)surf->data)->dlightBits[tr.smpFrame] = 0;
}
else if (*surf->data == SF_GRID)
{
((srfGridMesh_t*)surf->data)->dlightMap[tr.smpFrame] = 0;
((srfGridMesh_t*)surf->data)->dlightBits[tr.smpFrame] = 0;
}
}
return 0;
}
/*
======================
R_CheckDlightTerrain
======================
*/
int R_CheckDlightTerrain(cTerraPatchUnpacked_t* surf, int dlightBits)
{
if (surf->frameCount == tr.frameCount) {
return surf->drawinfo.dlightMap[tr.smpFrame];
}
surf->frameCount = tr.frameCount;
if (dlightBits) {
return R_DlightTerrain(surf, dlightBits);
}
surf->drawinfo.dlightMap[tr.smpFrame] = 0;
surf->drawinfo.dlightBits[tr.smpFrame] = 0;
return 0;
}
/*
======================
R_AddWorldSurface
======================
*/
static void R_AddWorldSurface( msurface_t *surf, int dlightBits ) {
//if ( surf->viewCount == tr.viewCount ) {
// return; // already in this view
//}
surf->viewCount = tr.viewCount;
// FIXME: bmodel fog?
// try to cull before dlighting or adding
if ( R_CullSurface( surf->data, surf->shader ) ) {
return;
}
// check for dlighting
dlightBits = R_CheckDlightSurface(surf, dlightBits);
if (surf->shader && surf->shader->isPortalSky) {
// Sky portal
R_Sky_AddSurf(surf);
return;
}
R_AddDrawSurf( surf->data, surf->shader, dlightBits );
}
/*
=============================================================
BRUSH MODELS
=============================================================
*/
/*
=================
R_AddBrushModelSurfaces
=================
*/
void R_AddBrushModelSurfaces ( trRefEntity_t *ent ) {
bmodel_t *bmodel;
int clip;
model_t *pModel;
int i;
pModel = R_GetModelByHandle( ent->e.hModel );
bmodel = pModel->d.bmodel;
clip = R_CullLocalBox( bmodel->bounds );
if ( clip == CULL_OUT ) {
return;
}
R_DlightBmodel( bmodel );
for ( i = 0 ; i < bmodel->numSurfaces ; i++ ) {
R_AddWorldSurface( bmodel->firstSurface + i, tr.currentEntity->needDlights );
}
}
/*
=============================================================
WORLD MODEL
=============================================================
*/
void R_GetInlineModelBounds(int iIndex, vec3_t vMins, vec3_t vMaxs)
{
bmodel_t* bmodel;
bmodel = &tr.world->bmodels[iIndex];
VectorCopy(bmodel->bounds[0], vMins);
VectorCopy(bmodel->bounds[1], vMaxs);
}
/*
================
R_RecursiveWorldNode
================
*/
static void R_RecursiveWorldNode( mnode_t *node, int planeBits, int dlightBits ) {
do {
// if the node wasn't marked as potentially visible, exit
if (node->visframe != tr.visCount) {
return;
}
// if the bounding volume is outside the frustum, nothing
// inside can be visible OPTIMIZE: don't do this all the way to leafs?
if ( !r_nocull->integer ) {
int r;
if (planeBits & 1) {
r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[0]);
if (r == 2) {
return; // culled
}
if (r == 1) {
planeBits &= ~1; // all descendants will also be in front
}
}
if (planeBits & 2) {
r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[1]);
if (r == 2) {
return; // culled
}
if (r == 1) {
planeBits &= ~2; // all descendants will also be in front
}
}
if (planeBits & 4) {
r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[2]);
if (r == 2) {
return; // culled
}
if (r == 1) {
planeBits &= ~4; // all descendants will also be in front
}
}
if (planeBits & 8) {
r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[3]);
if (r == 2) {
return; // culled
}
if (r == 1) {
planeBits &= ~8; // all descendants will also be in front
}
}
if (planeBits & 16) {
r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[4]);
if (r == 2) {
return; // culled
}
if (r == 1) {
planeBits &= ~16; // all descendants will also be in front
}
}
}
if ( node->contents != -1 ) {
break;
}
// recurse down the children, front side first
R_RecursiveWorldNode (node->children[0], planeBits, dlightBits);
// tail recurse
node = node->children[1];
} while ( 1 );
{
// leaf node, so add mark surfaces
int c;
msurface_t *surf, **mark;
tr.pc.c_leafs++;
// add to z buffer bounds
if ( node->mins[0] < tr.viewParms.visBounds[0][0] ) {
tr.viewParms.visBounds[0][0] = node->mins[0];
}
if ( node->mins[1] < tr.viewParms.visBounds[0][1] ) {
tr.viewParms.visBounds[0][1] = node->mins[1];
}
if ( node->mins[2] < tr.viewParms.visBounds[0][2] ) {
tr.viewParms.visBounds[0][2] = node->mins[2];
}
if ( node->maxs[0] > tr.viewParms.visBounds[1][0] ) {
tr.viewParms.visBounds[1][0] = node->maxs[0];
}
if ( node->maxs[1] > tr.viewParms.visBounds[1][1] ) {
tr.viewParms.visBounds[1][1] = node->maxs[1];
}
if ( node->maxs[2] > tr.viewParms.visBounds[1][2] ) {
tr.viewParms.visBounds[1][2] = node->maxs[2];
}
tr.portalsky.cntNode = node;
if (r_drawbrushes->integer) {
// add the individual surfaces
mark = node->firstmarksurface;
c = node->nummarksurfaces;
while (c--) {
// the surface may have already been added if it
// spans multiple leafs
surf = *mark;
if (surf->viewCount != tr.viewCount) {
R_AddWorldSurface(surf, dlightBits);
}
mark++;
}
}
if (r_drawterrain->integer && tr.refdef.render_terrain && !tr.viewParms.isPortalSky)
{
int i;
for (i = 0; i < node->numTerraPatches; i++) {
R_MarkTerrainPatch(tr.world->visTerraPatches[node->firstTerraPatch + i]);
}
}
if (r_drawstaticdecals->integer) {
if (node->pFirstMarkFragment) {
R_AddPermanentMarkFragmentSurfaces(node->pFirstMarkFragment, node->iNumMarkFragment);
}
}
if (r_drawstaticmodels->integer) {
int i;
for (i = 0; i < node->numStaticModels; i++) {
tr.world->visStaticModels[node->firstStaticModel + i]->visCount = tr.visCount;
}
}
}
}
int R_SphereInLeafs(const vec3_t p, float r, mnode_t** nodes, int nMaxNodes) {
mnode_t* nodestack[1024];
int iNodeStackPos;
mnode_t* pCurNode;
int nFoundNodes;
iNodeStackPos = 0;
pCurNode = tr.world->nodes;
nFoundNodes = 0;
while (1)
{
cplane_t* plane;
float d;
while (pCurNode->contents == -1)
{
plane = pCurNode->plane;
if (plane->type >= PLANE_NON_AXIAL) {
d = DotProduct(p, plane->normal) - plane->dist;
} else {
d = p[plane->type] - plane->dist;
}
if (d < r) {
if (d > -r) {
nodestack[iNodeStackPos++] = pCurNode->children[0];
}
pCurNode = pCurNode->children[1];
} else {
pCurNode = pCurNode->children[0];
}
}
nodes[nFoundNodes++] = pCurNode;
if (!iNodeStackPos || nFoundNodes == nMaxNodes) {
break;
}
iNodeStackPos--;
pCurNode = nodestack[iNodeStackPos];
}
return nFoundNodes;
}
/*
===============
R_PointInLeaf
===============
*/
mnode_t *R_PointInLeaf( const vec3_t p ) {
mnode_t *node;
float d;
cplane_t *plane;
if ( !tr.world ) {
ri.Error (ERR_DROP, "R_PointInLeaf: bad model");
}
node = tr.world->nodes;
while( 1 ) {
if (node->contents != -1) {
break;
}
plane = node->plane;
d = DotProduct (p,plane->normal) - plane->dist;
if (d > 0) {
node = node->children[0];
} else {
node = node->children[1];
}
}
return node;
}
/*
==============
R_ClusterPVS
==============
*/
static const byte *R_ClusterPVS (int cluster) {
if (!tr.world || !tr.world->vis || cluster < 0 || cluster >= tr.world->numClusters ) {
return tr.world->novis;
}
return tr.world->vis + cluster * tr.world->clusterBytes;
}
/*
=================
R_inPVS
=================
*/
qboolean R_inPVS( const vec3_t p1, const vec3_t p2 ) {
mnode_t *leaf;
byte *vis;
leaf = R_PointInLeaf( p1 );
vis = ri.CM_ClusterPVS( leaf->cluster );
leaf = R_PointInLeaf( p2 );
if ( !(vis[leaf->cluster>>3] & (1<<(leaf->cluster&7))) ) {
return qfalse;
}
return qtrue;
}
/*
===============
R_MarkLeaves
Mark the leaves and nodes that are in the PVS for the current
cluster
===============
*/
static void R_MarkLeaves (void) {
const byte *vis;
mnode_t *leaf, *parent;
int i;
int cluster;
// lockpvs lets designers walk around to determine the
// extent of the current pvs
if ( r_lockpvs->integer ) {
return;
}
// current viewcluster
leaf = R_PointInLeaf( tr.viewParms.pvsOrigin );
cluster = leaf->cluster;
// if the cluster is the same and the area visibility matrix
// hasn't changed, we don't need to mark everything again
// if r_showcluster was just turned on, remark everything
if ( tr.viewCluster == cluster && !tr.refdef.areamaskModified
&& !r_showcluster->modified ) {
return;
}
if ( r_showcluster->modified || r_showcluster->integer ) {
r_showcluster->modified = qfalse;
if ( r_showcluster->integer ) {
ri.Printf( PRINT_ALL, "cluster:%i area:%i\n", cluster, leaf->area );
}
}
tr.visCount++;
tr.viewCluster = cluster;
if ( r_novis->integer || tr.viewCluster == -1 ) {
for (i=0 ; i<tr.world->numnodes ; i++) {
if (tr.world->nodes[i].contents != CONTENTS_SOLID) {
tr.world->nodes[i].visframe = tr.visCount;
}
}
return;
}
vis = R_ClusterPVS (tr.viewCluster);
for (i=0,leaf=tr.world->nodes ; i<tr.world->numnodes ; i++, leaf++) {
cluster = leaf->cluster;
if ( cluster < 0 || cluster >= tr.world->numClusters ) {
continue;
}
// check general pvs
if ( !(vis[cluster>>3] & (1<<(cluster&7))) ) {
continue;
}
// check for door connection
if ( (tr.refdef.areamask[leaf->area>>3] & (1<<(leaf->area&7)) ) ) {
continue; // not visible
}
parent = leaf;
do {
if (parent->visframe == tr.visCount)
break;
parent->visframe = tr.visCount;
parent = parent->parent;
} while (parent);
}
}
/*
=============
R_AddWorldSurfaces
=============
*/
void R_AddWorldSurfaces (void) {
if (!r_drawworld->integer) {
return;
}
if (tr.refdef.rdflags & RDF_NOWORLDMODEL) {
return;
}
tr.currentEntityNum = ENTITYNUM_WORLD;
tr.shiftedEntityNum = tr.currentEntityNum << QSORT_ENTITYNUM_SHIFT;
if (r_drawterrain->integer && tr.refdef.render_terrain && !tr.viewParms.isPortalSky) {
R_TerrainPrepareFrame();
}
// determine which leaves are in the PVS / areamask
R_MarkLeaves();
// clear out the visible min/max
ClearBounds(tr.viewParms.visBounds[0], tr.viewParms.visBounds[1]);
// perform frustum culling and add all the potentially visible surfaces
if (tr.refdef.num_dlights > 32) {
tr.refdef.num_dlights = 32;
}
R_TransformDlights(tr.refdef.num_dlights, tr.refdef.dlights, &tr.viewParms.world);
R_RecursiveWorldNode(tr.world->nodes, tr.viewParms.fog.extrafrustums ? 31 : 15, (1 << tr.refdef.num_dlights) - 1);
if (r_drawterrain->integer && tr.refdef.render_terrain && !tr.viewParms.isPortalSky) {
R_AddTerrainSurfaces();
}
if (r_drawstaticmodels->integer) {
R_AddStaticModelSurfaces();
}
if (g_bInfostaticmodels) {
g_bInfostaticmodels = 0;
R_PrintInfoStaticModels();
}
R_UpdateLevelMarksSystem();
}