/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. Copyright (C) 2006-2011 Robert Beckebans This file is part of XreaL source code. XreaL source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. XreaL source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XreaL source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // tr_surface.c #include "tr_local.h" /* ============================================================================== THIS ENTIRE FILE IS BACK END! backEnd.currentEntity will be valid. Tess_Begin has already been called for the surface's shader. The modelview matrix will be set. It is safe to actually issue drawing commands here if you don't want to use the shader system. ============================================================================== */ /* ============== Tess_EndBegin ============== */ void Tess_EndBegin() { Tess_End(); Tess_Begin(tess.stageIteratorFunc, tess.stageIteratorFunc2, tess.surfaceShader, tess.lightShader, tess.skipTangentSpaces, tess.skipVBO, tess.lightmapNum, tess.fogNum); } /* ============== Tess_CheckOverflow ============== */ void Tess_CheckOverflow(int verts, int indexes) { #if defined(USE_D3D10) // TODO #else if((glState.currentVBO != NULL && glState.currentVBO != tess.vbo) || (glState.currentIBO != NULL && glState.currentIBO != tess.ibo)) { Tess_EndBegin(); R_BindVBO(tess.vbo); R_BindIBO(tess.ibo); } #endif if(tess.numVertexes + verts < SHADER_MAX_VERTEXES && tess.numIndexes + indexes < SHADER_MAX_INDEXES) { return; } if(r_logFile->integer) { // don't just call LogComment, or we will get // a call to va() every frame! GLimp_LogComment(va ("--- Tess_CheckOverflow(%i + %i vertices, %i + %i triangles ) ---\n", tess.numVertexes, verts, (tess.numIndexes / 3), indexes)); } Tess_End(); if(verts >= SHADER_MAX_VERTEXES) { ri.Error(ERR_DROP, "Tess_CheckOverflow: verts > MAX (%d > %d)", verts, SHADER_MAX_VERTEXES); } if(indexes >= SHADER_MAX_INDEXES) { ri.Error(ERR_DROP, "Tess_CheckOverflow: indices > MAX (%d > %d)", indexes, SHADER_MAX_INDEXES); } Tess_Begin(tess.stageIteratorFunc, tess.stageIteratorFunc2, tess.surfaceShader, tess.lightShader, tess.skipTangentSpaces, tess.skipVBO, tess.lightmapNum, tess.fogNum); } /* ============== Tess_AddQuadStampExt ============== */ void Tess_AddQuadStampExt(vec3_t origin, vec3_t left, vec3_t up, const vec4_t color, float s1, float t1, float s2, float t2) { int i; vec3_t normal; int ndx; GLimp_LogComment("--- Tess_AddQuadStampExt ---\n"); Tess_CheckOverflow(4, 6); ndx = tess.numVertexes; // triangle indexes for a simple quad tess.indexes[tess.numIndexes] = ndx; tess.indexes[tess.numIndexes + 1] = ndx + 1; tess.indexes[tess.numIndexes + 2] = ndx + 3; tess.indexes[tess.numIndexes + 3] = ndx + 3; tess.indexes[tess.numIndexes + 4] = ndx + 1; tess.indexes[tess.numIndexes + 5] = ndx + 2; tess.xyz[ndx][0] = origin[0] + left[0] + up[0]; tess.xyz[ndx][1] = origin[1] + left[1] + up[1]; tess.xyz[ndx][2] = origin[2] + left[2] + up[2]; tess.xyz[ndx][3] = 1; tess.xyz[ndx + 1][0] = origin[0] - left[0] + up[0]; tess.xyz[ndx + 1][1] = origin[1] - left[1] + up[1]; tess.xyz[ndx + 1][2] = origin[2] - left[2] + up[2]; tess.xyz[ndx + 1][3] = 1; tess.xyz[ndx + 2][0] = origin[0] - left[0] - up[0]; tess.xyz[ndx + 2][1] = origin[1] - left[1] - up[1]; tess.xyz[ndx + 2][2] = origin[2] - left[2] - up[2]; tess.xyz[ndx + 2][3] = 1; tess.xyz[ndx + 3][0] = origin[0] + left[0] - up[0]; tess.xyz[ndx + 3][1] = origin[1] + left[1] - up[1]; tess.xyz[ndx + 3][2] = origin[2] + left[2] - up[2]; tess.xyz[ndx + 3][3] = 1; // constant normal all the way around VectorSubtract(vec3_origin, backEnd.viewParms.orientation.axis[0], normal); tess.normals[ndx][0] = tess.normals[ndx + 1][0] = tess.normals[ndx + 2][0] = tess.normals[ndx + 3][0] = normal[0]; tess.normals[ndx][1] = tess.normals[ndx + 1][1] = tess.normals[ndx + 2][1] = tess.normals[ndx + 3][1] = normal[1]; tess.normals[ndx][2] = tess.normals[ndx + 1][2] = tess.normals[ndx + 2][2] = tess.normals[ndx + 3][2] = normal[2]; // standard square texture coordinates tess.texCoords[ndx][0] = s1; tess.texCoords[ndx][1] = t1; tess.texCoords[ndx][2] = 0; tess.texCoords[ndx][3] = 1; tess.texCoords[ndx + 1][0] = s2; tess.texCoords[ndx + 1][1] = t1; tess.texCoords[ndx + 1][2] = 0; tess.texCoords[ndx + 1][3] = 1; tess.texCoords[ndx + 2][0] = s2; tess.texCoords[ndx + 2][1] = t2; tess.texCoords[ndx + 2][2] = 0; tess.texCoords[ndx + 2][3] = 1; tess.texCoords[ndx + 3][0] = s1; tess.texCoords[ndx + 3][1] = t2; tess.texCoords[ndx + 3][2] = 0; tess.texCoords[ndx + 3][3] = 1; // constant color all the way around // should this be identity and let the shader specify from entity? for(i = 0; i < 4; i++) { Vector4Copy(color, tess.colors[ndx + i]); } tess.numVertexes += 4; tess.numIndexes += 6; } /* ============== Tess_AddQuadStamp ============== */ void Tess_AddQuadStamp(vec3_t origin, vec3_t left, vec3_t up, const vec4_t color) { Tess_AddQuadStampExt(origin, left, up, color, 0, 0, 1, 1); } /* ============== Tess_AddQuadStampExt2 ============== */ void Tess_AddQuadStampExt2(vec4_t quadVerts[4], const vec4_t color, float s1, float t1, float s2, float t2, qboolean calcNormals) { int i; vec4_t plane; int ndx; GLimp_LogComment("--- Tess_AddQuadStampExt2 ---\n"); Tess_CheckOverflow(4, 6); ndx = tess.numVertexes; // triangle indexes for a simple quad tess.indexes[tess.numIndexes] = ndx; tess.indexes[tess.numIndexes + 1] = ndx + 1; tess.indexes[tess.numIndexes + 2] = ndx + 3; tess.indexes[tess.numIndexes + 3] = ndx + 3; tess.indexes[tess.numIndexes + 4] = ndx + 1; tess.indexes[tess.numIndexes + 5] = ndx + 2; Vector4Copy(quadVerts[0], tess.xyz[ndx + 0]); Vector4Copy(quadVerts[1], tess.xyz[ndx + 1]); Vector4Copy(quadVerts[2], tess.xyz[ndx + 2]); Vector4Copy(quadVerts[3], tess.xyz[ndx + 3]); // constant normal all the way around if(calcNormals) { PlaneFromPoints(plane, quadVerts[0], quadVerts[1], quadVerts[2], qtrue); } else { VectorNegate(backEnd.viewParms.orientation.axis[0], plane); } tess.normals[ndx][0] = tess.normals[ndx + 1][0] = tess.normals[ndx + 2][0] = tess.normals[ndx + 3][0] = plane[0]; tess.normals[ndx][1] = tess.normals[ndx + 1][1] = tess.normals[ndx + 2][1] = tess.normals[ndx + 3][1] = plane[1]; tess.normals[ndx][2] = tess.normals[ndx + 1][2] = tess.normals[ndx + 2][2] = tess.normals[ndx + 3][2] = plane[2]; // standard square texture coordinates tess.texCoords[ndx][0] = s1; tess.texCoords[ndx][1] = t1; tess.texCoords[ndx][2] = 0; tess.texCoords[ndx][3] = 1; tess.texCoords[ndx + 1][0] = s2; tess.texCoords[ndx + 1][1] = t1; tess.texCoords[ndx + 1][2] = 0; tess.texCoords[ndx + 1][3] = 1; tess.texCoords[ndx + 2][0] = s2; tess.texCoords[ndx + 2][1] = t2; tess.texCoords[ndx + 2][2] = 0; tess.texCoords[ndx + 2][3] = 1; tess.texCoords[ndx + 3][0] = s1; tess.texCoords[ndx + 3][1] = t2; tess.texCoords[ndx + 3][2] = 0; tess.texCoords[ndx + 3][3] = 1; // constant color all the way around // should this be identity and let the shader specify from entity? for(i = 0; i < 4; i++) { Vector4Copy(color, tess.colors[ndx + i]); } tess.numVertexes += 4; tess.numIndexes += 6; } /* ============== Tess_AddQuadStamp2 ============== */ void Tess_AddQuadStamp2(vec4_t quadVerts[4], const vec4_t color) { Tess_AddQuadStampExt2(quadVerts, color, 0, 0, 1, 1, qfalse); } void Tess_AddQuadStamp2WithNormals(vec4_t quadVerts[4], const vec4_t color) { Tess_AddQuadStampExt2(quadVerts, color, 0, 0, 1, 1, qtrue); } void Tess_AddTetrahedron(vec4_t tetraVerts[4], const vec4_t color) { int k; Tess_CheckOverflow(12, 12); // ground triangle for(k = 0; k < 3; k++) { Vector4Copy(tetraVerts[k], tess.xyz[tess.numVertexes]); Vector4Copy(color, tess.colors[tess.numVertexes]); tess.indexes[tess.numIndexes++] = tess.numVertexes; tess.numVertexes++; } // side triangles for(k = 0; k < 3; k++) { Vector4Copy(tetraVerts[3], tess.xyz[tess.numVertexes]); // offset Vector4Copy(color, tess.colors[tess.numVertexes]); tess.indexes[tess.numIndexes++] = tess.numVertexes; tess.numVertexes++; Vector4Copy(tetraVerts[k], tess.xyz[tess.numVertexes]); Vector4Copy(color, tess.colors[tess.numVertexes]); tess.indexes[tess.numIndexes++] = tess.numVertexes; tess.numVertexes++; Vector4Copy(tetraVerts[(k + 1) % 3], tess.xyz[tess.numVertexes]); Vector4Copy(color, tess.colors[tess.numVertexes]); tess.indexes[tess.numIndexes++] = tess.numVertexes; tess.numVertexes++; } } void Tess_AddCube(const vec3_t position, const vec3_t minSize, const vec3_t maxSize, const vec4_t color) { vec4_t quadVerts[4]; vec3_t mins; vec3_t maxs; VectorAdd(position, minSize, mins); VectorAdd(position, maxSize, maxs); VectorSet4(quadVerts[0], mins[0], mins[1], mins[2], 1); VectorSet4(quadVerts[1], mins[0], maxs[1], mins[2], 1); VectorSet4(quadVerts[2], mins[0], maxs[1], maxs[2], 1); VectorSet4(quadVerts[3], mins[0], mins[1], maxs[2], 1); Tess_AddQuadStamp2(quadVerts, color); VectorSet4(quadVerts[0], maxs[0], mins[1], maxs[2], 1); VectorSet4(quadVerts[1], maxs[0], maxs[1], maxs[2], 1); VectorSet4(quadVerts[2], maxs[0], maxs[1], mins[2], 1); VectorSet4(quadVerts[3], maxs[0], mins[1], mins[2], 1); Tess_AddQuadStamp2(quadVerts, color); VectorSet4(quadVerts[0], mins[0], mins[1], maxs[2], 1); VectorSet4(quadVerts[1], mins[0], maxs[1], maxs[2], 1); VectorSet4(quadVerts[2], maxs[0], maxs[1], maxs[2], 1); VectorSet4(quadVerts[3], maxs[0], mins[1], maxs[2], 1); Tess_AddQuadStamp2(quadVerts, color); VectorSet4(quadVerts[0], maxs[0], mins[1], mins[2], 1); VectorSet4(quadVerts[1], maxs[0], maxs[1], mins[2], 1); VectorSet4(quadVerts[2], mins[0], maxs[1], mins[2], 1); VectorSet4(quadVerts[3], mins[0], mins[1], mins[2], 1); Tess_AddQuadStamp2(quadVerts, color); VectorSet4(quadVerts[0], mins[0], mins[1], mins[2], 1); VectorSet4(quadVerts[1], mins[0], mins[1], maxs[2], 1); VectorSet4(quadVerts[2], maxs[0], mins[1], maxs[2], 1); VectorSet4(quadVerts[3], maxs[0], mins[1], mins[2], 1); Tess_AddQuadStamp2(quadVerts, color); VectorSet4(quadVerts[0], maxs[0], maxs[1], mins[2], 1); VectorSet4(quadVerts[1], maxs[0], maxs[1], maxs[2], 1); VectorSet4(quadVerts[2], mins[0], maxs[1], maxs[2], 1); VectorSet4(quadVerts[3], mins[0], maxs[1], mins[2], 1); Tess_AddQuadStamp2(quadVerts, color); } void Tess_AddCubeWithNormals(const vec3_t position, const vec3_t minSize, const vec3_t maxSize, const vec4_t color) { vec4_t quadVerts[4]; vec3_t mins; vec3_t maxs; VectorAdd(position, minSize, mins); VectorAdd(position, maxSize, maxs); VectorSet4(quadVerts[0], mins[0], mins[1], mins[2], 1); VectorSet4(quadVerts[1], mins[0], maxs[1], mins[2], 1); VectorSet4(quadVerts[2], mins[0], maxs[1], maxs[2], 1); VectorSet4(quadVerts[3], mins[0], mins[1], maxs[2], 1); Tess_AddQuadStamp2WithNormals(quadVerts, color); VectorSet4(quadVerts[0], maxs[0], mins[1], maxs[2], 1); VectorSet4(quadVerts[1], maxs[0], maxs[1], maxs[2], 1); VectorSet4(quadVerts[2], maxs[0], maxs[1], mins[2], 1); VectorSet4(quadVerts[3], maxs[0], mins[1], mins[2], 1); Tess_AddQuadStamp2WithNormals(quadVerts, color); VectorSet4(quadVerts[0], mins[0], mins[1], maxs[2], 1); VectorSet4(quadVerts[1], mins[0], maxs[1], maxs[2], 1); VectorSet4(quadVerts[2], maxs[0], maxs[1], maxs[2], 1); VectorSet4(quadVerts[3], maxs[0], mins[1], maxs[2], 1); Tess_AddQuadStamp2WithNormals(quadVerts, color); VectorSet4(quadVerts[0], maxs[0], mins[1], mins[2], 1); VectorSet4(quadVerts[1], maxs[0], maxs[1], mins[2], 1); VectorSet4(quadVerts[2], mins[0], maxs[1], mins[2], 1); VectorSet4(quadVerts[3], mins[0], mins[1], mins[2], 1); Tess_AddQuadStamp2WithNormals(quadVerts, color); VectorSet4(quadVerts[0], mins[0], mins[1], mins[2], 1); VectorSet4(quadVerts[1], mins[0], mins[1], maxs[2], 1); VectorSet4(quadVerts[2], maxs[0], mins[1], maxs[2], 1); VectorSet4(quadVerts[3], maxs[0], mins[1], mins[2], 1); Tess_AddQuadStamp2WithNormals(quadVerts, color); VectorSet4(quadVerts[0], maxs[0], maxs[1], mins[2], 1); VectorSet4(quadVerts[1], maxs[0], maxs[1], maxs[2], 1); VectorSet4(quadVerts[2], mins[0], maxs[1], maxs[2], 1); VectorSet4(quadVerts[3], mins[0], maxs[1], mins[2], 1); Tess_AddQuadStamp2WithNormals(quadVerts, color); } /* ============== Tess_UpdateVBOs Tr3B: update the default VBO to replace the client side vertex arrays ============== */ void Tess_UpdateVBOs(uint32_t attribBits) { if(r_logFile->integer) { GLimp_LogComment(va("--- Tess_UpdateVBOs( attribBits = %i ) ---\n", attribBits)); } GL_CheckErrors(); // update the default VBO if(tess.numVertexes > 0 && tess.numVertexes <= SHADER_MAX_VERTEXES) { R_BindVBO(tess.vbo); GL_CheckErrors(); if(!(attribBits & ATTR_BITS)) { attribBits |= ATTR_POSITION | ATTR_TEXCOORD | ATTR_COLOR; if(backEnd.currentEntity != &backEnd.entity2D) { attribBits |= ATTR_NORMAL; if(r_normalMapping->integer) { attribBits |= ATTR_TANGENT | ATTR_BINORMAL; } } if(backEnd.currentEntity == &tr.worldEntity) { #if defined(COMPAT_Q3A) || defined(COMPAT_ET) attribBits |= ATTR_LIGHTCOORD; #else attribBits |= ATTR_LIGHTCOORD | ATTR_PAINTCOLOR | ATTR_LIGHTDIRECTION; #endif } } GL_VertexAttribsState(attribBits); if(attribBits & ATTR_POSITION) { if(r_logFile->integer) { GLimp_LogComment(va("glBufferSubDataARB( ATTR_POSITION, vbo = '%s', numVertexes = %i )\n", tess.vbo->name, tess.numVertexes)); } glBufferSubDataARB(GL_ARRAY_BUFFER_ARB, tess.vbo->ofsXYZ, tess.numVertexes * sizeof(vec4_t), tess.xyz); } if(attribBits & ATTR_TEXCOORD) { if(r_logFile->integer) { GLimp_LogComment(va("glBufferSubDataARB( ATTR_TEXCOORD, vbo = '%s', numVertexes = %i )\n", tess.vbo->name, tess.numVertexes)); } glBufferSubDataARB(GL_ARRAY_BUFFER_ARB, tess.vbo->ofsTexCoords, tess.numVertexes * sizeof(vec4_t), tess.texCoords); } if(attribBits & ATTR_LIGHTCOORD) { if(r_logFile->integer) { GLimp_LogComment(va("glBufferSubDataARB( ATTR_LIGHTCOORD, vbo = '%s', numVertexes = %i )\n", tess.vbo->name, tess.numVertexes)); } glBufferSubDataARB(GL_ARRAY_BUFFER_ARB, tess.vbo->ofsLightCoords, tess.numVertexes * sizeof(vec4_t), tess.lightCoords); } if(attribBits & ATTR_TANGENT) { if(r_logFile->integer) { GLimp_LogComment(va("glBufferSubDataARB( ATTR_TANGENT, vbo = '%s', numVertexes = %i )\n", tess.vbo->name, tess.numVertexes)); } glBufferSubDataARB(GL_ARRAY_BUFFER_ARB, tess.vbo->ofsTangents, tess.numVertexes * sizeof(vec4_t), tess.tangents); } if(attribBits & ATTR_BINORMAL) { if(r_logFile->integer) { GLimp_LogComment(va("glBufferSubDataARB( ATTR_BINORMAL, vbo = '%s', numVertexes = %i )\n", tess.vbo->name, tess.numVertexes)); } glBufferSubDataARB(GL_ARRAY_BUFFER_ARB, tess.vbo->ofsBinormals, tess.numVertexes * sizeof(vec4_t), tess.binormals); } if(attribBits & ATTR_NORMAL) { if(r_logFile->integer) { GLimp_LogComment(va("glBufferSubDataARB( ATTR_NORMAL, vbo = '%s', numVertexes = %i )\n", tess.vbo->name, tess.numVertexes)); } glBufferSubDataARB(GL_ARRAY_BUFFER_ARB, tess.vbo->ofsNormals, tess.numVertexes * sizeof(vec4_t), tess.normals); } if(attribBits & ATTR_COLOR) { if(r_logFile->integer) { GLimp_LogComment(va("glBufferSubDataARB( ATTR_COLOR, vbo = '%s', numVertexes = %i )\n", tess.vbo->name, tess.numVertexes)); } glBufferSubDataARB(GL_ARRAY_BUFFER_ARB, tess.vbo->ofsColors, tess.numVertexes * sizeof(vec4_t), tess.colors); } #if !defined(COMPAT_Q3A) && !defined(COMPAT_ET) if(attribBits & ATTR_PAINTCOLOR) { if(r_logFile->integer) { GLimp_LogComment(va("glBufferSubDataARB( ATTR_PAINTCOLOR, vbo = '%s', numVertexes = %i )\n", tess.vbo->name, tess.numVertexes)); } glBufferSubDataARB(GL_ARRAY_BUFFER_ARB, tess.vbo->ofsPaintColors, tess.numVertexes * sizeof(vec4_t), tess.paintColors); } if(attribBits & ATTR_LIGHTDIRECTION) { if(r_logFile->integer) { GLimp_LogComment(va("glBufferSubDataARB( ATTR_LIGHTDIRECTION, vbo = '%s', numVertexes = %i )\n", tess.vbo->name, tess.numVertexes)); } glBufferSubDataARB(GL_ARRAY_BUFFER_ARB, tess.vbo->ofsLightDirections, tess.numVertexes * sizeof(vec4_t), tess.lightDirections); } #endif } GL_CheckErrors(); // update the default IBO if(tess.numIndexes > 0 && tess.numIndexes <= SHADER_MAX_INDEXES) { R_BindIBO(tess.ibo); glBufferSubDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0, tess.numIndexes * sizeof(glIndex_t), tess.indexes); } GL_CheckErrors(); } /* ============== Tess_InstantQuad ============== */ void Tess_InstantQuad(vec4_t quadVerts[4]) { GLimp_LogComment("--- Tess_InstantQuad ---\n"); tess.multiDrawPrimitives = 0; tess.numVertexes = 0; tess.numIndexes = 0; Vector4Copy(quadVerts[0], tess.xyz[tess.numVertexes]); tess.texCoords[tess.numVertexes][0] = 0; tess.texCoords[tess.numVertexes][1] = 0; tess.texCoords[tess.numVertexes][2] = 0; tess.texCoords[tess.numVertexes][3] = 1; tess.colors[tess.numVertexes][0] = 1; tess.colors[tess.numVertexes][1] = 1; tess.colors[tess.numVertexes][2] = 1; tess.colors[tess.numVertexes][3] = 1; tess.numVertexes++; Vector4Copy(quadVerts[1], tess.xyz[tess.numVertexes]); tess.texCoords[tess.numVertexes][0] = 1; tess.texCoords[tess.numVertexes][1] = 0; tess.texCoords[tess.numVertexes][2] = 0; tess.texCoords[tess.numVertexes][3] = 1; tess.colors[tess.numVertexes][0] = 1; tess.colors[tess.numVertexes][1] = 1; tess.colors[tess.numVertexes][2] = 1; tess.colors[tess.numVertexes][3] = 1; tess.numVertexes++; Vector4Copy(quadVerts[2], tess.xyz[tess.numVertexes]); tess.texCoords[tess.numVertexes][0] = 1; tess.texCoords[tess.numVertexes][1] = 1; tess.texCoords[tess.numVertexes][2] = 0; tess.texCoords[tess.numVertexes][3] = 1; tess.colors[tess.numVertexes][0] = 1; tess.colors[tess.numVertexes][1] = 1; tess.colors[tess.numVertexes][2] = 1; tess.colors[tess.numVertexes][3] = 1; tess.numVertexes++; Vector4Copy(quadVerts[3], tess.xyz[tess.numVertexes]); tess.texCoords[tess.numVertexes][0] = 0; tess.texCoords[tess.numVertexes][1] = 1; tess.texCoords[tess.numVertexes][2] = 0; tess.texCoords[tess.numVertexes][3] = 1; tess.colors[tess.numVertexes][0] = 1; tess.colors[tess.numVertexes][1] = 1; tess.colors[tess.numVertexes][2] = 1; tess.colors[tess.numVertexes][3] = 1; tess.numVertexes++; tess.indexes[tess.numIndexes++] = 0; tess.indexes[tess.numIndexes++] = 1; tess.indexes[tess.numIndexes++] = 2; tess.indexes[tess.numIndexes++] = 0; tess.indexes[tess.numIndexes++] = 2; tess.indexes[tess.numIndexes++] = 3; Tess_UpdateVBOs(ATTR_POSITION | ATTR_TEXCOORD | ATTR_COLOR); Tess_DrawElements(); tess.multiDrawPrimitives = 0; tess.numVertexes = 0; tess.numIndexes = 0; GL_CheckErrors(); } /* ============== Tess_SurfaceSplash ============== */ static void Tess_SurfaceSplash(void) { vec3_t left, up; float radius; vec4_t color; GLimp_LogComment("--- Tess_SurfaceSplash ---\n"); // calculate the xyz locations for the four corners radius = backEnd.currentEntity->e.radius; VectorSet(left, -radius, 0, 0); VectorSet(up, 0, radius, 0); if(backEnd.viewParms.isMirror) { VectorSubtract(vec3_origin, left, left); } color[0] = backEnd.currentEntity->e.shaderRGBA[0] * (1.0 / 255.0); color[1] = backEnd.currentEntity->e.shaderRGBA[1] * (1.0 / 255.0); color[2] = backEnd.currentEntity->e.shaderRGBA[2] * (1.0 / 255.0); color[3] = backEnd.currentEntity->e.shaderRGBA[3] * (1.0 / 255.0); Tess_AddQuadStamp(backEnd.currentEntity->e.origin, left, up, color); } /* ============== Tess_SurfaceSprite ============== */ static void Tess_SurfaceSprite(void) { vec3_t left, up; float radius; vec4_t color; GLimp_LogComment("--- Tess_SurfaceSprite ---\n"); // calculate the xyz locations for the four corners radius = backEnd.currentEntity->e.radius; if(backEnd.currentEntity->e.rotation == 0) { VectorScale(backEnd.viewParms.orientation.axis[1], radius, left); VectorScale(backEnd.viewParms.orientation.axis[2], radius, up); } else { float s, c; float ang; ang = M_PI * backEnd.currentEntity->e.rotation / 180; s = sin(ang); c = cos(ang); VectorScale(backEnd.viewParms.orientation.axis[1], c * radius, left); VectorMA(left, -s * radius, backEnd.viewParms.orientation.axis[2], left); VectorScale(backEnd.viewParms.orientation.axis[2], c * radius, up); VectorMA(up, s * radius, backEnd.viewParms.orientation.axis[1], up); } if(backEnd.viewParms.isMirror) { VectorSubtract(vec3_origin, left, left); } color[0] = backEnd.currentEntity->e.shaderRGBA[0] * (1.0 / 255.0); color[1] = backEnd.currentEntity->e.shaderRGBA[1] * (1.0 / 255.0); color[2] = backEnd.currentEntity->e.shaderRGBA[2] * (1.0 / 255.0); color[3] = backEnd.currentEntity->e.shaderRGBA[3] * (1.0 / 255.0); Tess_AddQuadStamp(backEnd.currentEntity->e.origin, left, up, color); } /* ============== VectorArrayNormalize The inputs to this routing seem to always be close to length = 1.0 (about 0.6 to 2.0) This means that we don't have to worry about zero length or enormously long vectors. ============== */ static void VectorArrayNormalize(vec4_t * normals, unsigned int count) { // assert(count); #if idppc { register float half = 0.5; register float one = 1.0; float *components = (float *)normals; // Vanilla PPC code, but since PPC has a reciprocal square root estimate instruction, // runs *much* faster than calling sqrt(). We'll use a single Newton-Raphson // refinement step to get a little more precision. This seems to yeild results // that are correct to 3 decimal places and usually correct to at least 4 (sometimes 5). // (That is, for the given input range of about 0.6 to 2.0). do { float x, y, z; float B, y0, y1; x = components[0]; y = components[1]; z = components[2]; components += 4; B = x * x + y * y + z * z; #ifdef __GNUC__ asm("frsqrte %0,%1": "=f"(y0):"f"(B)); #else y0 = __frsqrte(B); #endif y1 = y0 + half * y0 * (one - B * y0 * y0); x = x * y1; y = y * y1; components[-4] = x; z = z * y1; components[-3] = y; components[-2] = z; } while(count--); } #else // No assembly version for this architecture, or C_ONLY defined // given the input, it's safe to call VectorNormalizeFast while(count--) { VectorNormalizeFast(normals[0]); normals++; } #endif } /* ============= Tess_SurfacePolychain ============= */ static void Tess_SurfacePolychain(srfPoly_t * p) { int i; int numVertexes; int numIndexes; GLimp_LogComment("--- Tess_SurfacePolychain ---\n"); Tess_CheckOverflow(p->numVerts, 3 * (p->numVerts - 2)); // fan triangles into the tess array numVertexes = 0; for(i = 0; i < p->numVerts; i++) { VectorCopy(p->verts[i].xyz, tess.xyz[tess.numVertexes + i]); tess.xyz[tess.numVertexes + i][3] = 1; tess.texCoords[tess.numVertexes + i][0] = p->verts[i].st[0]; tess.texCoords[tess.numVertexes + i][1] = p->verts[i].st[1]; tess.texCoords[tess.numVertexes + i][2] = 0; tess.texCoords[tess.numVertexes + i][3] = 1; tess.colors[tess.numVertexes + i][0] = p->verts[i].modulate[0] * (1.0 / 255.0); tess.colors[tess.numVertexes + i][1] = p->verts[i].modulate[1] * (1.0 / 255.0); tess.colors[tess.numVertexes + i][2] = p->verts[i].modulate[2] * (1.0 / 255.0); tess.colors[tess.numVertexes + i][3] = p->verts[i].modulate[3] * (1.0 / 255.0); numVertexes++; } // generate fan indexes into the tess array numIndexes = 0; for(i = 0; i < p->numVerts - 2; i++) { tess.indexes[tess.numIndexes + i * 3 + 0] = tess.numVertexes; tess.indexes[tess.numIndexes + i * 3 + 1] = tess.numVertexes + i + 1; tess.indexes[tess.numIndexes + i * 3 + 2] = tess.numVertexes + i + 2; numIndexes += 3; } #if 0 // calc tangent spaces if(tess.surfaceShader->interactLight && !tess.skipTangentSpaces) { int i; float *v; const float *v0, *v1, *v2; const float *t0, *t1, *t2; vec3_t tangent; vec3_t binormal; vec3_t normal; int *indices; for(i = 0; i < numVertexes; i++) { VectorClear(tess.tangents[tess.numVertexes + i]); VectorClear(tess.binormals[tess.numVertexes + i]); VectorClear(tess.normals[tess.numVertexes + i]); } for(i = 0, indices = tess.indexes + tess.numIndexes; i < numIndexes; i += 3, indices += 3) { v0 = tess.xyz[indices[0]]; v1 = tess.xyz[indices[1]]; v2 = tess.xyz[indices[2]]; t0 = tess.texCoords[indices[0]]; t1 = tess.texCoords[indices[1]]; t2 = tess.texCoords[indices[2]]; R_CalcTangentSpaceFast(tangent, binormal, normal, v0, v1, v2, t0, t1, t2); for(j = 0; j < 3; j++) { v = tess.tangents[indices[j]]; VectorAdd(v, tangent, v); v = tess.binormals[indices[j]]; VectorAdd(v, binormal, v); v = tess.normals[indices[j]]; VectorAdd(v, normal, v); } } VectorArrayNormalize((vec4_t *) tess.tangents[tess.numVertexes], numVertexes); VectorArrayNormalize((vec4_t *) tess.binormals[tess.numVertexes], numVertexes); VectorArrayNormalize((vec4_t *) tess.normals[tess.numVertexes], numVertexes); } #endif tess.numIndexes += numIndexes; tess.numVertexes += numVertexes; } void Tess_SurfacePolybuffer(srfPolyBuffer_t * surf) { int i; int numIndexes; int numVertexes; int *indices; float *xyzw; float *st; byte *color; GLimp_LogComment("--- Tess_SurfacePolybuffer ---\n"); Tess_CheckOverflow(surf->pPolyBuffer->numVerts, surf->pPolyBuffer->numIndicies); numIndexes = Q_min(surf->pPolyBuffer->numIndicies, MAX_PB_INDICIES); indices = surf->pPolyBuffer->indicies; for(i = 0; i < numIndexes; i++) { tess.indexes[tess.numIndexes + i] = tess.numVertexes + indices[i]; } tess.numIndexes += numIndexes; numVertexes = Q_min(surf->pPolyBuffer->numVerts, MAX_PB_VERTS); xyzw = &surf->pPolyBuffer->xyz[0][0]; st = &surf->pPolyBuffer->st[0][0]; color = &surf->pPolyBuffer->color[0][0]; for(i = 0; i < numVertexes; i++, xyzw += 4, st += 2, color += 4) { VectorCopy(xyzw, tess.xyz[tess.numVertexes + i]); tess.xyz[tess.numVertexes + i][3] = 1; tess.texCoords[tess.numVertexes + i][0] = st[0]; tess.texCoords[tess.numVertexes + i][1] = st[1]; tess.texCoords[tess.numVertexes + i][2] = 0; tess.texCoords[tess.numVertexes + i][3] = 1; tess.colors[tess.numVertexes + i][0] = color[0] * (1.0 / 255.0); tess.colors[tess.numVertexes + i][1] = color[1] * (1.0 / 255.0); tess.colors[tess.numVertexes + i][2] = color[2] * (1.0 / 255.0); tess.colors[tess.numVertexes + i][3] = color[3] * (1.0 / 255.0); } tess.numVertexes += numVertexes; } // ydnar: decal surfaces void Tess_SurfaceDecal(srfDecal_t * srf) { int i; GLimp_LogComment("--- Tess_SurfaceDecal ---\n"); Tess_CheckOverflow(srf->numVerts, 3 * (srf->numVerts - 2)); // fan triangles into the tess array for(i = 0; i < srf->numVerts; i++) { VectorCopy(srf->verts[i].xyz, tess.xyz[tess.numVertexes + i]); tess.xyz[tess.numVertexes + i][3] = 1; tess.texCoords[tess.numVertexes + i][0] = srf->verts[i].st[0]; tess.texCoords[tess.numVertexes + i][1] = srf->verts[i].st[1]; tess.texCoords[tess.numVertexes + i][2] = 0; tess.texCoords[tess.numVertexes + i][3] = 1; tess.colors[tess.numVertexes + i][0] = srf->verts[i].modulate[0] * (1.0 / 255.0); tess.colors[tess.numVertexes + i][1] = srf->verts[i].modulate[1] * (1.0 / 255.0); tess.colors[tess.numVertexes + i][2] = srf->verts[i].modulate[2] * (1.0 / 255.0); tess.colors[tess.numVertexes + i][3] = srf->verts[i].modulate[3] * (1.0 / 255.0); } // generate fan indexes into the tess array for(i = 0; i < srf->numVerts - 2; i++) { tess.indexes[tess.numIndexes + 0] = tess.numVertexes; tess.indexes[tess.numIndexes + 1] = tess.numVertexes + i + 1; tess.indexes[tess.numIndexes + 2] = tess.numVertexes + i + 2; tess.numIndexes += 3; } tess.numVertexes += srf->numVerts; } /* ============== Tess_SurfaceFace ============== */ static void Tess_SurfaceFace(srfSurfaceFace_t * srf) { int i; srfTriangle_t *tri; srfVert_t *dv; float *xyz, *tangent, *binormal, *normal, *texCoords, *lightCoords, *color, *paintColor, *lightDirection; GLimp_LogComment("--- Tess_SurfaceFace ---\n"); if(r_vboFaces->integer && srf->vbo && srf->ibo && !tess.skipVBO && !ShaderRequiresCPUDeforms(tess.surfaceShader) && tess.stageIteratorFunc != &Tess_StageIteratorSky) { if(tess.multiDrawPrimitives >= MAX_MULTIDRAW_PRIMITIVES) { Tess_EndBegin(); } R_BindVBO(srf->vbo); R_BindIBO(srf->ibo); tess.multiDrawIndexes[tess.multiDrawPrimitives] = (glIndex_t*) BUFFER_OFFSET(srf->firstTriangle * 3 * sizeof(glIndex_t)); tess.multiDrawCounts[tess.multiDrawPrimitives] = srf->numTriangles * 3; tess.multiDrawPrimitives++; return; } Tess_CheckOverflow(srf->numVerts, srf->numTriangles * 3); for(i = 0, tri = srf->triangles; i < srf->numTriangles; i++, tri++) { tess.indexes[tess.numIndexes + i * 3 + 0] = tess.numVertexes + tri->indexes[0]; tess.indexes[tess.numIndexes + i * 3 + 1] = tess.numVertexes + tri->indexes[1]; tess.indexes[tess.numIndexes + i * 3 + 2] = tess.numVertexes + tri->indexes[2]; } tess.numIndexes += srf->numTriangles * 3; dv = srf->verts; xyz = tess.xyz[tess.numVertexes]; tangent = tess.tangents[tess.numVertexes]; binormal = tess.binormals[tess.numVertexes]; normal = tess.normals[tess.numVertexes]; texCoords = tess.texCoords[tess.numVertexes]; lightCoords = tess.lightCoords[tess.numVertexes]; color = tess.colors[tess.numVertexes]; #if defined(COMPAT_Q3A) || defined(COMPAT_ET) for(i = 0; i < srf->numVerts; i++, dv++, xyz += 4, tangent += 4, binormal += 4, normal += 4, texCoords += 4, lightCoords += 4, color += 4) { xyz[0] = dv->xyz[0]; xyz[1] = dv->xyz[1]; xyz[2] = dv->xyz[2]; xyz[3] = 1; //if(!tess.skipTangentSpaces) { tangent[0] = dv->tangent[0]; tangent[1] = dv->tangent[1]; tangent[2] = dv->tangent[2]; binormal[0] = dv->binormal[0]; binormal[1] = dv->binormal[1]; binormal[2] = dv->binormal[2]; normal[0] = dv->normal[0]; normal[1] = dv->normal[1]; normal[2] = dv->normal[2]; } texCoords[0] = dv->st[0]; texCoords[1] = dv->st[1]; texCoords[2] = 0; texCoords[3] = 1; lightCoords[0] = dv->lightmap[0]; lightCoords[1] = dv->lightmap[1]; lightCoords[2] = 0; lightCoords[3] = 1; color[0] = dv->lightColor[0]; color[1] = dv->lightColor[1]; color[2] = dv->lightColor[2]; color[3] = dv->lightColor[3]; } #else paintColor = tess.paintColors[tess.numVertexes]; lightDirection = tess.lightDirections[tess.numVertexes]; for(i = 0; i < srf->numVerts; i++, dv++, xyz += 4, tangent += 4, binormal += 4, normal += 4, texCoords += 4, lightCoords += 4, color += 4, paintColor += 4, lightDirection += 4) { xyz[0] = dv->xyz[0]; xyz[1] = dv->xyz[1]; xyz[2] = dv->xyz[2]; xyz[3] = 1; //if(!tess.skipTangentSpaces) { tangent[0] = dv->tangent[0]; tangent[1] = dv->tangent[1]; tangent[2] = dv->tangent[2]; binormal[0] = dv->binormal[0]; binormal[1] = dv->binormal[1]; binormal[2] = dv->binormal[2]; normal[0] = dv->normal[0]; normal[1] = dv->normal[1]; normal[2] = dv->normal[2]; } texCoords[0] = dv->st[0]; texCoords[1] = dv->st[1]; texCoords[2] = 0; texCoords[3] = 1; lightCoords[0] = dv->lightmap[0]; lightCoords[1] = dv->lightmap[1]; lightCoords[2] = 0; lightCoords[3] = 1; color[0] = dv->lightColor[0]; color[1] = dv->lightColor[1]; color[2] = dv->lightColor[2]; color[3] = dv->lightColor[3]; paintColor[0] = dv->paintColor[0]; paintColor[1] = dv->paintColor[1]; paintColor[2] = dv->paintColor[2]; paintColor[3] = dv->paintColor[3]; lightDirection[0] = dv->lightDirection[0]; lightDirection[1] = dv->lightDirection[1]; lightDirection[2] = dv->lightDirection[2]; lightDirection[3] = 1; } #endif tess.numVertexes += srf->numVerts; } /* ============= Tess_SurfaceGrid ============= */ static void Tess_SurfaceGrid(srfGridMesh_t * srf) { int i; srfTriangle_t *tri; srfVert_t *dv; float *xyz, *tangent, *binormal, *normal, *texCoords, *lightCoords, *color, *paintColor, *lightDirection; GLimp_LogComment("--- Tess_SurfaceGrid ---\n"); if(r_vboCurves->integer && srf->vbo && srf->ibo && !ShaderRequiresCPUDeforms(tess.surfaceShader)) { if(tess.multiDrawPrimitives >= MAX_MULTIDRAW_PRIMITIVES) { Tess_EndBegin(); } R_BindVBO(srf->vbo); R_BindIBO(srf->ibo); tess.multiDrawIndexes[tess.multiDrawPrimitives] = (glIndex_t*) BUFFER_OFFSET(srf->firstTriangle * 3 * sizeof(glIndex_t)); tess.multiDrawCounts[tess.multiDrawPrimitives] = srf->numTriangles * 3; tess.multiDrawPrimitives++; return; } Tess_CheckOverflow(srf->numVerts, srf->numTriangles * 3); for(i = 0, tri = srf->triangles; i < srf->numTriangles; i++, tri++) { tess.indexes[tess.numIndexes + i * 3 + 0] = tess.numVertexes + tri->indexes[0]; tess.indexes[tess.numIndexes + i * 3 + 1] = tess.numVertexes + tri->indexes[1]; tess.indexes[tess.numIndexes + i * 3 + 2] = tess.numVertexes + tri->indexes[2]; } tess.numIndexes += srf->numTriangles * 3; dv = srf->verts; xyz = tess.xyz[tess.numVertexes]; tangent = tess.tangents[tess.numVertexes]; binormal = tess.binormals[tess.numVertexes]; normal = tess.normals[tess.numVertexes]; texCoords = tess.texCoords[tess.numVertexes]; lightCoords = tess.lightCoords[tess.numVertexes]; color = tess.colors[tess.numVertexes]; #if defined(COMPAT_Q3A) || defined(COMPAT_ET) for(i = 0; i < srf->numVerts; i++, dv++, xyz += 4, tangent += 4, binormal += 4, normal += 4, texCoords += 4, lightCoords += 4, color += 4) { xyz[0] = dv->xyz[0]; xyz[1] = dv->xyz[1]; xyz[2] = dv->xyz[2]; xyz[3] = 1; //if(!tess.skipTangentSpaces) { tangent[0] = dv->tangent[0]; tangent[1] = dv->tangent[1]; tangent[2] = dv->tangent[2]; binormal[0] = dv->binormal[0]; binormal[1] = dv->binormal[1]; binormal[2] = dv->binormal[2]; normal[0] = dv->normal[0]; normal[1] = dv->normal[1]; normal[2] = dv->normal[2]; } texCoords[0] = dv->st[0]; texCoords[1] = dv->st[1]; texCoords[2] = 0; texCoords[3] = 1; lightCoords[0] = dv->lightmap[0]; lightCoords[1] = dv->lightmap[1]; lightCoords[2] = 0; lightCoords[3] = 1; color[0] = dv->lightColor[0]; color[1] = dv->lightColor[1]; color[2] = dv->lightColor[2]; color[3] = dv->lightColor[3]; } #else paintColor = tess.paintColors[tess.numVertexes]; lightDirection = tess.lightDirections[tess.numVertexes]; for(i = 0; i < srf->numVerts; i++, dv++, xyz += 4, tangent += 4, binormal += 4, normal += 4, texCoords += 4, lightCoords += 4, color += 4, paintColor += 4, lightDirection += 4) { xyz[0] = dv->xyz[0]; xyz[1] = dv->xyz[1]; xyz[2] = dv->xyz[2]; xyz[3] = 1; //if(!tess.skipTangentSpaces) { tangent[0] = dv->tangent[0]; tangent[1] = dv->tangent[1]; tangent[2] = dv->tangent[2]; binormal[0] = dv->binormal[0]; binormal[1] = dv->binormal[1]; binormal[2] = dv->binormal[2]; normal[0] = dv->normal[0]; normal[1] = dv->normal[1]; normal[2] = dv->normal[2]; } texCoords[0] = dv->st[0]; texCoords[1] = dv->st[1]; texCoords[2] = 0; texCoords[3] = 1; lightCoords[0] = dv->lightmap[0]; lightCoords[1] = dv->lightmap[1]; lightCoords[2] = 0; lightCoords[3] = 1; color[0] = dv->lightColor[0]; color[1] = dv->lightColor[1]; color[2] = dv->lightColor[2]; color[3] = dv->lightColor[3]; paintColor[0] = dv->paintColor[0]; paintColor[1] = dv->paintColor[1]; paintColor[2] = dv->paintColor[2]; paintColor[3] = dv->paintColor[3]; lightDirection[0] = dv->lightDirection[0]; lightDirection[1] = dv->lightDirection[1]; lightDirection[2] = dv->lightDirection[2]; lightDirection[3] = 1; } #endif tess.numVertexes += srf->numVerts; } /* ============= Tess_SurfaceTriangles ============= */ static void Tess_SurfaceTriangles(srfTriangles_t * srf) { int i; srfTriangle_t *tri; srfVert_t *dv; float *xyz, *tangent, *binormal, *normal, *texCoords, *lightCoords, *color, *paintColor, *lightDirection; GLimp_LogComment("--- Tess_SurfaceTriangles ---\n"); if(r_vboTriangles->integer && srf->vbo && srf->ibo && !ShaderRequiresCPUDeforms(tess.surfaceShader)) { if(tess.multiDrawPrimitives >= MAX_MULTIDRAW_PRIMITIVES) { Tess_EndBegin(); } R_BindVBO(srf->vbo); R_BindIBO(srf->ibo); tess.multiDrawIndexes[tess.multiDrawPrimitives] = (glIndex_t*) BUFFER_OFFSET(srf->firstTriangle * 3 * sizeof(glIndex_t)); tess.multiDrawCounts[tess.multiDrawPrimitives] = srf->numTriangles * 3; tess.multiDrawPrimitives++; return; } Tess_CheckOverflow(srf->numVerts, srf->numTriangles * 3); for(i = 0, tri = srf->triangles; i < srf->numTriangles; i++, tri++) { tess.indexes[tess.numIndexes + i * 3 + 0] = tess.numVertexes + tri->indexes[0]; tess.indexes[tess.numIndexes + i * 3 + 1] = tess.numVertexes + tri->indexes[1]; tess.indexes[tess.numIndexes + i * 3 + 2] = tess.numVertexes + tri->indexes[2]; } tess.numIndexes += srf->numTriangles * 3; dv = srf->verts; xyz = tess.xyz[tess.numVertexes]; tangent = tess.tangents[tess.numVertexes]; binormal = tess.binormals[tess.numVertexes]; normal = tess.normals[tess.numVertexes]; texCoords = tess.texCoords[tess.numVertexes]; lightCoords = tess.lightCoords[tess.numVertexes]; color = tess.colors[tess.numVertexes]; #if defined(COMPAT_Q3A) || defined(COMPAT_ET) for(i = 0; i < srf->numVerts; i++, dv++, xyz += 4, tangent += 4, binormal += 4, normal += 4, texCoords += 4, lightCoords += 4, color += 4) { xyz[0] = dv->xyz[0]; xyz[1] = dv->xyz[1]; xyz[2] = dv->xyz[2]; xyz[3] = 1; //if(!tess.skipTangentSpaces) { tangent[0] = dv->tangent[0]; tangent[1] = dv->tangent[1]; tangent[2] = dv->tangent[2]; binormal[0] = dv->binormal[0]; binormal[1] = dv->binormal[1]; binormal[2] = dv->binormal[2]; normal[0] = dv->normal[0]; normal[1] = dv->normal[1]; normal[2] = dv->normal[2]; } texCoords[0] = dv->st[0]; texCoords[1] = dv->st[1]; texCoords[2] = 0; texCoords[3] = 1; lightCoords[0] = dv->lightmap[0]; lightCoords[1] = dv->lightmap[1]; lightCoords[2] = 0; lightCoords[3] = 1; color[0] = dv->lightColor[0]; color[1] = dv->lightColor[1]; color[2] = dv->lightColor[2]; color[3] = dv->lightColor[3]; } #else paintColor = tess.paintColors[tess.numVertexes]; lightDirection = tess.lightDirections[tess.numVertexes]; for(i = 0; i < srf->numVerts; i++, dv++, xyz += 4, tangent += 4, binormal += 4, normal += 4, texCoords += 4, lightCoords += 4, color += 4, paintColor += 4, lightDirection += 4) { xyz[0] = dv->xyz[0]; xyz[1] = dv->xyz[1]; xyz[2] = dv->xyz[2]; xyz[3] = 1; //if(!tess.skipTangentSpaces) { tangent[0] = dv->tangent[0]; tangent[1] = dv->tangent[1]; tangent[2] = dv->tangent[2]; binormal[0] = dv->binormal[0]; binormal[1] = dv->binormal[1]; binormal[2] = dv->binormal[2]; normal[0] = dv->normal[0]; normal[1] = dv->normal[1]; normal[2] = dv->normal[2]; } texCoords[0] = dv->st[0]; texCoords[1] = dv->st[1]; texCoords[2] = 0; texCoords[3] = 1; lightCoords[0] = dv->lightmap[0]; lightCoords[1] = dv->lightmap[1]; lightCoords[2] = 0; lightCoords[3] = 1; color[0] = dv->lightColor[0]; color[1] = dv->lightColor[1]; color[2] = dv->lightColor[2]; color[3] = dv->lightColor[3]; paintColor[0] = dv->paintColor[0]; paintColor[1] = dv->paintColor[1]; paintColor[2] = dv->paintColor[2]; paintColor[3] = dv->paintColor[3]; lightDirection[0] = dv->lightDirection[0]; lightDirection[1] = dv->lightDirection[1]; lightDirection[2] = dv->lightDirection[2]; lightDirection[3] = 1; } #endif tess.numVertexes += srf->numVerts; } /* ============== Tess_SurfaceBeam ============== */ static void Tess_SurfaceBeam(void) { #if 1 GLimp_LogComment("--- Tess_SurfaceBeam ---\n"); // TODO rewrite without glBegin/glEnd #else #define NUM_BEAM_SEGS 6 refEntity_t *e; int i; vec3_t perpvec; vec3_t direction, normalized_direction; vec3_t start_points[NUM_BEAM_SEGS], end_points[NUM_BEAM_SEGS]; vec3_t oldorigin, origin; GLimp_LogComment("--- Tess_SurfaceBeam ---\n"); if(glState.currentVBO != tess.vbo || glState.currentIBO != tess.ibo) { Tess_EndBegin(); R_BindVBO(tess.vbo); R_BindIBO(tess.ibo); } e = &backEnd.currentEntity->e; oldorigin[0] = e->oldorigin[0]; oldorigin[1] = e->oldorigin[1]; oldorigin[2] = e->oldorigin[2]; origin[0] = e->origin[0]; origin[1] = e->origin[1]; origin[2] = e->origin[2]; normalized_direction[0] = direction[0] = oldorigin[0] - origin[0]; normalized_direction[1] = direction[1] = oldorigin[1] - origin[1]; normalized_direction[2] = direction[2] = oldorigin[2] - origin[2]; if(VectorNormalize(normalized_direction) == 0) return; PerpendicularVector(perpvec, normalized_direction); VectorScale(perpvec, 4, perpvec); for(i = 0; i < NUM_BEAM_SEGS; i++) { RotatePointAroundVector(start_points[i], normalized_direction, perpvec, (360.0 / NUM_BEAM_SEGS) * i); // VectorAdd( start_points[i], origin, start_points[i] ); VectorAdd(start_points[i], direction, end_points[i]); } GL_BindProgram(0); GL_SelectTexture(0); GL_Bind(tr.whiteImage); GL_State(GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE); glColor3f(1, 0, 0); glBegin(GL_TRIANGLE_STRIP); for(i = 0; i <= NUM_BEAM_SEGS; i++) { glVertex3fv(start_points[i % NUM_BEAM_SEGS]); glVertex3fv(end_points[i % NUM_BEAM_SEGS]); } glEnd(); #endif } //================================================================================ static void Tess_DoRailCore(const vec3_t start, const vec3_t end, const vec3_t up, float len, float spanWidth) { float spanWidth2; int vbase; float t = len / 256.0f; vbase = tess.numVertexes; spanWidth2 = -spanWidth; // FIXME: use quad stamp? VectorMA(start, spanWidth, up, tess.xyz[tess.numVertexes]); tess.xyz[tess.numVertexes][3] = 1; tess.texCoords[tess.numVertexes][0] = 0; tess.texCoords[tess.numVertexes][1] = 0; tess.texCoords[tess.numVertexes][2] = 0; tess.texCoords[tess.numVertexes][3] = 1; tess.colors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0] * 0.25 * (1.0 / 255.0); tess.colors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1] * 0.25 * (1.0 / 255.0); tess.colors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2] * 0.25 * (1.0 / 255.0); tess.numVertexes++; VectorMA(start, spanWidth2, up, tess.xyz[tess.numVertexes]); tess.xyz[tess.numVertexes][3] = 1; tess.texCoords[tess.numVertexes][0] = 0; tess.texCoords[tess.numVertexes][1] = 1; tess.texCoords[tess.numVertexes][2] = 0; tess.texCoords[tess.numVertexes][3] = 1; tess.colors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0] * (1.0 / 255.0); tess.colors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1] * (1.0 / 255.0); tess.colors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2] * (1.0 / 255.0); tess.numVertexes++; VectorMA(end, spanWidth, up, tess.xyz[tess.numVertexes]); tess.xyz[tess.numVertexes][3] = 1; tess.texCoords[tess.numVertexes][0] = t; tess.texCoords[tess.numVertexes][1] = 0; tess.texCoords[tess.numVertexes][2] = 0; tess.texCoords[tess.numVertexes][3] = 1; tess.colors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0] * (1.0 / 255.0); tess.colors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1] * (1.0 / 255.0); tess.colors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2] * (1.0 / 255.0); tess.numVertexes++; VectorMA(end, spanWidth2, up, tess.xyz[tess.numVertexes]); tess.xyz[tess.numVertexes][3] = 1; tess.texCoords[tess.numVertexes][0] = t; tess.texCoords[tess.numVertexes][1] = 1; tess.texCoords[tess.numVertexes][2] = 0; tess.texCoords[tess.numVertexes][3] = 1; tess.colors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0] * (1.0 / 255.0); tess.colors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1] * (1.0 / 255.0); tess.colors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2] * (1.0 / 255.0); tess.numVertexes++; tess.indexes[tess.numIndexes++] = vbase; tess.indexes[tess.numIndexes++] = vbase + 1; tess.indexes[tess.numIndexes++] = vbase + 2; tess.indexes[tess.numIndexes++] = vbase + 2; tess.indexes[tess.numIndexes++] = vbase + 1; tess.indexes[tess.numIndexes++] = vbase + 3; } static void Tess_DoRailDiscs(int numSegs, const vec3_t start, const vec3_t dir, const vec3_t right, const vec3_t up) { int i; vec3_t pos[4]; vec3_t v; int spanWidth = r_railWidth->integer; float c, s; float scale; if(numSegs > 1) numSegs--; if(!numSegs) return; scale = 0.25; for(i = 0; i < 4; i++) { c = cos(DEG2RAD(45 + i * 90)); s = sin(DEG2RAD(45 + i * 90)); v[0] = (right[0] * c + up[0] * s) * scale * spanWidth; v[1] = (right[1] * c + up[1] * s) * scale * spanWidth; v[2] = (right[2] * c + up[2] * s) * scale * spanWidth; VectorAdd(start, v, pos[i]); if(numSegs > 1) { // offset by 1 segment if we're doing a long distance shot VectorAdd(pos[i], dir, pos[i]); } } for(i = 0; i < numSegs; i++) { int j; Tess_CheckOverflow(4, 6); for(j = 0; j < 4; j++) { VectorCopy(pos[j], tess.xyz[tess.numVertexes]); tess.xyz[tess.numVertexes][3] = 1; tess.texCoords[tess.numVertexes][0] = (j < 2); tess.texCoords[tess.numVertexes][1] = (j && j != 3); tess.texCoords[tess.numVertexes][2] = 0; tess.texCoords[tess.numVertexes][3] = 1; tess.colors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0] * (1.0 / 255.0); tess.colors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1] * (1.0 / 255.0); tess.colors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2] * (1.0 / 255.0); tess.numVertexes++; VectorAdd(pos[j], dir, pos[j]); } tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 0; tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 1; tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 3; tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 3; tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 1; tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 2; } } /* ============== Tess_SurfaceRailRings ============== */ static void Tess_SurfaceRailRings(void) { refEntity_t *e; int numSegs; int len; vec3_t vec; vec3_t right, up; vec3_t start, end; GLimp_LogComment("--- Tess_SurfaceRailRings ---\n"); e = &backEnd.currentEntity->e; VectorCopy(e->oldorigin, start); VectorCopy(e->origin, end); // compute variables VectorSubtract(end, start, vec); len = VectorNormalize(vec); MakeNormalVectors(vec, right, up); numSegs = (len) / r_railSegmentLength->value; if(numSegs <= 0) { numSegs = 1; } VectorScale(vec, r_railSegmentLength->value, vec); Tess_DoRailDiscs(numSegs, start, vec, right, up); } /* ============== Tess_SurfaceRailCore ============== */ static void Tess_SurfaceRailCore(void) { refEntity_t *e; int len; vec3_t right; vec3_t vec; vec3_t start, end; vec3_t v1, v2; GLimp_LogComment("--- Tess_SurfaceRailCore ---\n"); e = &backEnd.currentEntity->e; VectorCopy(e->oldorigin, start); VectorCopy(e->origin, end); VectorSubtract(end, start, vec); len = VectorNormalize(vec); // compute side vector VectorSubtract(start, backEnd.viewParms.orientation.origin, v1); VectorNormalize(v1); VectorSubtract(end, backEnd.viewParms.orientation.origin, v2); VectorNormalize(v2); CrossProduct(v1, v2, right); VectorNormalize(right); Tess_DoRailCore(start, end, right, len, r_railCoreWidth->integer); } /* ============== Tess_SurfaceLightningBolt ============== */ static void Tess_SurfaceLightningBolt(void) { refEntity_t *e; int len; vec3_t right; vec3_t vec; vec3_t start, end; vec3_t v1, v2; int i; GLimp_LogComment("--- Tess_SurfaceLightningBolt ---\n"); e = &backEnd.currentEntity->e; VectorCopy(e->oldorigin, end); VectorCopy(e->origin, start); // compute variables VectorSubtract(end, start, vec); len = VectorNormalize(vec); // compute side vector VectorSubtract(start, backEnd.viewParms.orientation.origin, v1); VectorNormalize(v1); VectorSubtract(end, backEnd.viewParms.orientation.origin, v2); VectorNormalize(v2); CrossProduct(v1, v2, right); VectorNormalize(right); for(i = 0; i < 4; i++) { vec3_t temp; Tess_DoRailCore(start, end, right, len, 8); RotatePointAroundVector(temp, vec, right, 45); VectorCopy(temp, right); } } /* ============= Tess_SurfaceMDV ============= */ static void Tess_SurfaceMDV(mdvSurface_t * srf) { int i, j; int numIndexes = 0; int numVertexes; mdvModel_t *model; mdvVertex_t *oldVert, *newVert; mdvSt_t *st; srfTriangle_t *tri; vec3_t lightOrigin; float backlerp; float oldXyzScale, newXyzScale; GLimp_LogComment("--- Tess_SurfaceMDV ---\n"); if(backEnd.currentEntity->e.oldframe == backEnd.currentEntity->e.frame) { backlerp = 0; } else { backlerp = backEnd.currentEntity->e.backlerp; } newXyzScale = (1.0 - backlerp); oldXyzScale = backlerp; Tess_CheckOverflow(srf->numVerts, srf->numTriangles * 3); model = srf->model; numIndexes = srf->numTriangles * 3; for(i = 0, tri = srf->triangles; i < srf->numTriangles; i++, tri++) { tess.indexes[tess.numIndexes + i * 3 + 0] = tess.numVertexes + tri->indexes[0]; tess.indexes[tess.numIndexes + i * 3 + 1] = tess.numVertexes + tri->indexes[1]; tess.indexes[tess.numIndexes + i * 3 + 2] = tess.numVertexes + tri->indexes[2]; } newVert = srf->verts + (backEnd.currentEntity->e.frame * srf->numVerts); oldVert = srf->verts + (backEnd.currentEntity->e.oldframe * srf->numVerts); st = srf->st; numVertexes = srf->numVerts; for(j = 0; j < numVertexes; j++, newVert++, oldVert++, st++) { vec3_t tmpVert; if(backlerp == 0) { // just copy tmpVert[0] = newVert->xyz[0] * newXyzScale; tmpVert[1] = newVert->xyz[1] * newXyzScale; tmpVert[2] = newVert->xyz[2] * newXyzScale; } else { // interpolate the xyz tmpVert[0] = oldVert->xyz[0] * oldXyzScale + newVert->xyz[0] * newXyzScale; tmpVert[1] = oldVert->xyz[1] * oldXyzScale + newVert->xyz[1] * newXyzScale; tmpVert[2] = oldVert->xyz[2] * oldXyzScale + newVert->xyz[2] * newXyzScale; } tess.xyz[tess.numVertexes + j][0] = tmpVert[0]; tess.xyz[tess.numVertexes + j][1] = tmpVert[1]; tess.xyz[tess.numVertexes + j][2] = tmpVert[2]; tess.xyz[tess.numVertexes + j][3] = 1; tess.texCoords[tess.numVertexes + j][0] = st->st[0]; tess.texCoords[tess.numVertexes + j][1] = st->st[1]; tess.texCoords[tess.numVertexes + j][2] = 0; tess.texCoords[tess.numVertexes + j][3] = 1; } // calc tangent spaces if(!tess.skipTangentSpaces) { int i; float *v; const float *v0, *v1, *v2; const float *t0, *t1, *t2; vec3_t tangent; vec3_t binormal; vec3_t normal; int *indices; for(i = 0; i < numVertexes; i++) { VectorClear(tess.tangents[tess.numVertexes + i]); VectorClear(tess.binormals[tess.numVertexes + i]); VectorClear(tess.normals[tess.numVertexes + i]); } for(i = 0, indices = tess.indexes + tess.numIndexes; i < numIndexes; i += 3, indices += 3) { v0 = tess.xyz[indices[0]]; v1 = tess.xyz[indices[1]]; v2 = tess.xyz[indices[2]]; t0 = tess.texCoords[indices[0]]; t1 = tess.texCoords[indices[1]]; t2 = tess.texCoords[indices[2]]; R_CalcTangentSpaceFast(tangent, binormal, normal, v0, v1, v2, t0, t1, t2); for(j = 0; j < 3; j++) { v = tess.tangents[indices[j]]; VectorAdd(v, tangent, v); v = tess.binormals[indices[j]]; VectorAdd(v, binormal, v); v = tess.normals[indices[j]]; VectorAdd(v, normal, v); } } #if 1 VectorArrayNormalize((vec4_t *) tess.tangents[tess.numVertexes], numVertexes); VectorArrayNormalize((vec4_t *) tess.binormals[tess.numVertexes], numVertexes); VectorArrayNormalize((vec4_t *) tess.normals[tess.numVertexes], numVertexes); #else for(i = 0; i < numVertexes; i++) { VectorNormalize(tess.tangents[tess.numVertexes + i]); VectorNormalize(tess.binormals[tess.numVertexes + i]); VectorNormalize(tess.normals[tess.numVertexes + i]); } #endif // TEST /* for(i = 0; i < numVertexes; i++) { VectorSet(tess.normals[tess.numVertexes + i], 0, 0, 1); } */ } tess.numIndexes += numIndexes; tess.numVertexes += numVertexes; } /* ============== Tess_SurfaceMD5 ============== */ static void Tess_SurfaceMD5(md5Surface_t * srf) { int i, j, k; int numIndexes = 0; int numVertexes; md5Model_t *model; md5Vertex_t *v; md5Bone_t *bone; srfTriangle_t *tri; vec3_t lightOrigin; float *xyzw, *xyzw2; static matrix_t boneMatrices[MAX_BONES]; GLimp_LogComment("--- Tess_SurfaceMD5 ---\n"); Tess_CheckOverflow(srf->numVerts, srf->numTriangles * 3); model = srf->model; numIndexes = srf->numTriangles * 3; for(i = 0, tri = srf->triangles; i < srf->numTriangles; i++, tri++) { tess.indexes[tess.numIndexes + i * 3 + 0] = tess.numVertexes + tri->indexes[0]; tess.indexes[tess.numIndexes + i * 3 + 1] = tess.numVertexes + tri->indexes[1]; tess.indexes[tess.numIndexes + i * 3 + 2] = tess.numVertexes + tri->indexes[2]; } if(tess.skipTangentSpaces) { vec3_t tmpVert; vec3_t tmpPosition; md5Weight_t *w; // convert bones back to matrices for(i = 0; i < model->numBones; i++) { matrix_t m, m2; #if defined(USE_REFENTITY_ANIMATIONSYSTEM) if(backEnd.currentEntity->e.skeleton.type == SK_ABSOLUTE) { MatrixSetupScale(m, backEnd.currentEntity->e.skeleton.scale[0], backEnd.currentEntity->e.skeleton.scale[1], backEnd.currentEntity->e.skeleton.scale[2]); MatrixSetupTransformFromQuat(m2, backEnd.currentEntity->e.skeleton.bones[i].rotation, backEnd.currentEntity->e.skeleton.bones[i].origin); Matrix4x4Multiply(m2, m, boneMatrices[i]); } else #endif { MatrixSetupTransformFromQuat(boneMatrices[i], model->bones[i].rotation, model->bones[i].origin); } } // deform the vertices by the lerped bones numVertexes = srf->numVerts; for(j = 0, v = srf->verts; j < numVertexes; j++, v++) { VectorClear(tmpPosition); for(k = 0, w = v->weights[0]; k < v->numWeights; k++, w++) { bone = &model->bones[w->boneIndex]; MatrixTransformPoint(boneMatrices[w->boneIndex], w->offset, tmpVert); VectorMA(tmpPosition, w->boneWeight, tmpVert, tmpPosition); } tess.xyz[tess.numVertexes + j][0] = tmpPosition[0]; tess.xyz[tess.numVertexes + j][1] = tmpPosition[1]; tess.xyz[tess.numVertexes + j][2] = tmpPosition[2]; tess.xyz[tess.numVertexes + j][3] = 1; tess.texCoords[tess.numVertexes + j][0] = v->texCoords[0]; tess.texCoords[tess.numVertexes + j][1] = v->texCoords[1]; tess.texCoords[tess.numVertexes + j][2] = 0; tess.texCoords[tess.numVertexes + j][3] = 1; } } else { vec3_t tmpVert; vec3_t tmpPosition; vec3_t tmpNormal; vec3_t tmpTangent; vec3_t tmpBinormal; md5Weight_t *w; // convert bones back to matrices for(i = 0; i < model->numBones; i++) { matrix_t m, m2; //, m3; #if defined(USE_REFENTITY_ANIMATIONSYSTEM) if(backEnd.currentEntity->e.skeleton.type == SK_ABSOLUTE) { MatrixSetupScale(m, backEnd.currentEntity->e.skeleton.scale[0], backEnd.currentEntity->e.skeleton.scale[1], backEnd.currentEntity->e.skeleton.scale[2]); MatrixSetupTransformFromQuat(m2, backEnd.currentEntity->e.skeleton.bones[i].rotation, backEnd.currentEntity->e.skeleton.bones[i].origin); Matrix4x4Multiply(m2, m, boneMatrices[i]); MatrixMultiply2(boneMatrices[i], model->bones[i].inverseTransform); } else #endif { MatrixIdentity(boneMatrices[i]); } } // deform the vertices by the lerped bones numVertexes = srf->numVerts; for(j = 0, v = srf->verts; j < numVertexes; j++, v++) { VectorClear(tmpPosition); VectorClear(tmpTangent); VectorClear(tmpBinormal); VectorClear(tmpNormal); for(k = 0, w = v->weights[0]; k < v->numWeights; k++, w++) { //MatrixTransformPoint(boneMatrices[w->boneIndex], w->offset, tmpVert); MatrixTransformPoint(boneMatrices[w->boneIndex], v->position, tmpVert); VectorMA(tmpPosition, w->boneWeight, tmpVert, tmpPosition); MatrixTransformNormal(boneMatrices[w->boneIndex], v->tangent, tmpVert); VectorMA(tmpTangent, w->boneWeight, tmpVert, tmpTangent); MatrixTransformNormal(boneMatrices[w->boneIndex], v->binormal, tmpVert); VectorMA(tmpBinormal, w->boneWeight, tmpVert, tmpBinormal); MatrixTransformNormal(boneMatrices[w->boneIndex], v->normal, tmpVert); VectorMA(tmpNormal, w->boneWeight, tmpVert, tmpNormal); } //VectorNormalize(tmpTangent); //VectorNormalize(tmpBinormal); //VectorNormalize(tmpNormal); //VectorCopy(v->tangent, tmpTangent); //VectorCopy(v->binormal, tmpBinormal); //VectorCopy(v->normal, tmpNormal); tess.xyz[tess.numVertexes + j][0] = tmpPosition[0]; tess.xyz[tess.numVertexes + j][1] = tmpPosition[1]; tess.xyz[tess.numVertexes + j][2] = tmpPosition[2]; tess.xyz[tess.numVertexes + j][3] = 1; tess.texCoords[tess.numVertexes + j][0] = v->texCoords[0]; tess.texCoords[tess.numVertexes + j][1] = v->texCoords[1]; tess.texCoords[tess.numVertexes + j][2] = 0; tess.texCoords[tess.numVertexes + j][3] = 1; tess.tangents[tess.numVertexes + j][0] = tmpTangent[0]; tess.tangents[tess.numVertexes + j][1] = tmpTangent[1]; tess.tangents[tess.numVertexes + j][2] = tmpTangent[2]; tess.tangents[tess.numVertexes + j][3] = 1; tess.binormals[tess.numVertexes + j][0] = tmpBinormal[0]; tess.binormals[tess.numVertexes + j][1] = tmpBinormal[1]; tess.binormals[tess.numVertexes + j][2] = tmpBinormal[2]; tess.binormals[tess.numVertexes + j][3] = 1; tess.normals[tess.numVertexes + j][0] = tmpNormal[0]; tess.normals[tess.numVertexes + j][1] = tmpNormal[1]; tess.normals[tess.numVertexes + j][2] = tmpNormal[2]; tess.normals[tess.numVertexes + j][3] = 1; } } tess.numIndexes += numIndexes; tess.numVertexes += numVertexes; } /* =========================================================================== NULL MODEL =========================================================================== */ /* =================== Tess_SurfaceAxis Draws x/y/z lines from the origin for orientation debugging =================== */ static void Tess_SurfaceAxis(void) { //int k; //vec4_t verts[3]; //vec3_t forward, right, up; GLimp_LogComment("--- Tess_SurfaceAxis ---\n"); #if 0 Tess_CheckOverflow(9, 9); MatrixToVectorsFRU(backEnd.orientation.transformMatrix, forward, right, up); VectorClear(verts[0]); VectorScale(forward, 1, verts[1]); VectorScale(up, 0.2, verts[2]); for(k = 0; k < 3; k++) { verts[k][3] = 1; Vector4Copy(verts[k], tess.xyz[tess.numVertexes]); Vector4Copy(colorRed, tess.colors[tess.numVertexes]); tess.indexes[tess.numIndexes++] = tess.numVertexes; tess.numVertexes++; } VectorScale(right, 1, verts[1]); VectorScale(up, 0.2, verts[2]); for(k = 0; k < 3; k++) { verts[k][3] = 1; Vector4Copy(verts[k], tess.xyz[tess.numVertexes]); Vector4Copy(colorGreen, tess.colors[tess.numVertexes]); tess.indexes[tess.numIndexes++] = tess.numVertexes; tess.numVertexes++; } VectorScale(up, 1, verts[1]); VectorScale(forward, 0.2, verts[2]); for(k = 0; k < 3; k++) { verts[k][3] = 1; Vector4Copy(verts[k], tess.xyz[tess.numVertexes]); Vector4Copy(colorBlue, tess.colors[tess.numVertexes]); tess.indexes[tess.numIndexes++] = tess.numVertexes; tess.numVertexes++; } #endif /* GL_BindProgram(0); GL_SelectTexture(0); GL_Bind(tr.whiteImage); glLineWidth(3); glBegin(GL_LINES); glColor3f(1, 0, 0); glVertex3f(0, 0, 0); glVertex3f(16, 0, 0); glColor3f(0, 1, 0); glVertex3f(0, 0, 0); glVertex3f(0, 16, 0); glColor3f(0, 0, 1); glVertex3f(0, 0, 0); glVertex3f(0, 0, 16); glEnd(); glLineWidth(1); */ } //=========================================================================== /* ==================== Tess_SurfaceEntity Entities that have a single procedurally generated surface ==================== */ static void Tess_SurfaceEntity(surfaceType_t * surfType) { GLimp_LogComment("--- Tess_SurfaceEntity ---\n"); if(glState.currentVBO != tess.vbo || glState.currentIBO != tess.ibo) { Tess_EndBegin(); R_BindVBO(tess.vbo); R_BindIBO(tess.ibo); } switch (backEnd.currentEntity->e.reType) { case RT_SPLASH: Tess_SurfaceSplash(); break; case RT_SPRITE: Tess_SurfaceSprite(); break; case RT_BEAM: Tess_SurfaceBeam(); break; case RT_RAIL_CORE: Tess_SurfaceRailCore(); break; case RT_RAIL_RINGS: Tess_SurfaceRailRings(); break; case RT_LIGHTNING: Tess_SurfaceLightningBolt(); break; default: Tess_SurfaceAxis(); break; } return; } static void Tess_SurfaceBad(surfaceType_t * surfType) { GLimp_LogComment("--- Tess_SurfaceBad ---\n"); ri.Printf(PRINT_ALL, "Bad surface tesselated.\n"); } static void Tess_SurfaceFlare(srfFlare_t * surf) { vec3_t dir; vec3_t origin; float d; GLimp_LogComment("--- Tess_SurfaceFlare ---\n"); if(glState.currentVBO != tess.vbo || glState.currentIBO != tess.ibo) { Tess_EndBegin(); R_BindVBO(tess.vbo); R_BindIBO(tess.ibo); } VectorMA(surf->origin, 2.0, surf->normal, origin); VectorSubtract(origin, backEnd.viewParms.orientation.origin, dir); VectorNormalize(dir); d = -DotProduct(dir, surf->normal); VectorMA(origin, r_ignore->value, dir, origin); if(d < 0) return; RB_AddFlare((void *)surf, tess.fogNum, origin, surf->color, surf->normal); } /* ============== Tess_SurfaceVBOMesh ============== */ static void Tess_SurfaceVBOMesh(srfVBOMesh_t * srf) { GLimp_LogComment("--- Tess_SurfaceVBOMesh ---\n"); if(!srf->vbo || !srf->ibo) return; Tess_EndBegin(); R_BindVBO(srf->vbo); R_BindIBO(srf->ibo); tess.numIndexes = srf->numIndexes; tess.numVertexes = srf->numVerts; Tess_End(); } /* ============== Tess_SurfaceVBOMDVMesh ============== */ void Tess_SurfaceVBOMDVMesh(srfVBOMDVMesh_t * surface) { int i; mdvModel_t *mdvModel; mdvSurface_t *mdvSurface; matrix_t m, m2; //, m3 refEntity_t *refEnt; GLimp_LogComment("--- Tess_SurfaceVBOMDVMesh ---\n"); if(!surface->vbo || !surface->ibo) return; Tess_EndBegin(); R_BindVBO(surface->vbo); R_BindIBO(surface->ibo); tess.numIndexes = surface->numIndexes; tess.numVertexes = surface->numVerts; mdvModel = surface->mdvModel; mdvSurface = surface->mdvSurface; refEnt = &backEnd.currentEntity->e; if(refEnt->oldframe == refEnt->frame) { glState.vertexAttribsInterpolation = 0; } else { glState.vertexAttribsInterpolation = (1.0 - refEnt->backlerp); } glState.vertexAttribsOldFrame = refEnt->oldframe; glState.vertexAttribsNewFrame = refEnt->frame; //glState.vertexAttribPointersSet = 0; //GL_VertexAttribPointers(ATTR_BITS | ATTR_POSITION2 | ATTR_TANGENT2 | ATTR_BINORMAL2 | ATTR_NORMAL2); Tess_End(); } /* ============== Tess_SurfaceVBOMD5Mesh ============== */ static void Tess_SurfaceVBOMD5Mesh(srfVBOMD5Mesh_t * srf) { int i; md5Model_t *model; matrix_t m, m2; //, m3; GLimp_LogComment("--- Tess_SurfaceVBOMD5Mesh ---\n"); if(!srf->vbo || !srf->ibo) return; Tess_EndBegin(); R_BindVBO(srf->vbo); R_BindIBO(srf->ibo); tess.numIndexes = srf->numIndexes; tess.numVertexes = srf->numVerts; model = srf->md5Model; #if defined(USE_REFENTITY_ANIMATIONSYSTEM) if(backEnd.currentEntity->e.skeleton.type == SK_ABSOLUTE) { tess.vboVertexSkinning = qtrue; MatrixSetupScale(m, backEnd.currentEntity->e.skeleton.scale[0], backEnd.currentEntity->e.skeleton.scale[1], backEnd.currentEntity->e.skeleton.scale[2]); #if 0 // convert bones back to matrices for(i = 0; i < model->numBones; i++) { MatrixSetupScale(m, backEnd.currentEntity->e.skeleton.scale[0], backEnd.currentEntity->e.skeleton.scale[1], backEnd.currentEntity->e.skeleton.scale[2]); MatrixSetupTransformFromQuat(m2, backEnd.currentEntity->e.skeleton.bones[i].rotation, backEnd.currentEntity->e.skeleton.bones[i].origin); Matrix4x4Multiply(m2, m, tess.boneMatrices[i]); MatrixMultiply2(tess.boneMatrices[i], model->bones[i].inverseTransform); } #else for(i = 0; i < srf->numBoneRemap; i++) { MatrixSetupTransformFromQuat(m2, backEnd.currentEntity->e.skeleton.bones[srf->boneRemapInverse[i]].rotation, backEnd.currentEntity->e.skeleton.bones[srf->boneRemapInverse[i]].origin); Matrix4x4Multiply(m2, m, tess.boneMatrices[i]); MatrixMultiply2(tess.boneMatrices[i], model->bones[srf->boneRemapInverse[i]].inverseTransform); } #endif } else #endif { tess.vboVertexSkinning = qfalse; } //GL_VertexAttribPointers(ATTR_BITS | ATTR_BONE_INDEXES | ATTR_BONE_WEIGHTS); Tess_End(); } static void Tess_SurfaceSkip(void *surf) { } // *INDENT-OFF* void (*rb_surfaceTable[SF_NUM_SURFACE_TYPES]) (void *) = { (void (*)(void *))Tess_SurfaceBad, // SF_BAD, (void (*)(void *))Tess_SurfaceSkip, // SF_SKIP, (void (*)(void *))Tess_SurfaceFace, // SF_FACE, (void (*)(void *))Tess_SurfaceGrid, // SF_GRID, (void (*)(void *))Tess_SurfaceTriangles, // SF_TRIANGLES, (void (*)(void *))Tess_SurfacePolychain, // SF_POLY, (void (*)(void *))Tess_SurfacePolybuffer, // SF_POLYBUFFER, (void (*)(void *))Tess_SurfaceDecal, // SF_DECAL (void (*)(void *))Tess_SurfaceMDV, // SF_MDV, #if defined(COMPAT_ET) (void (*)(void *))Tess_MDM_SurfaceAnim, // SF_MDM, #endif (void (*)(void *))Tess_SurfaceMD5, // SF_MD5, (void (*)(void *))Tess_SurfaceFlare, // SF_FLARE, (void (*)(void *))Tess_SurfaceEntity, // SF_ENTITY (void (*)(void *))Tess_SurfaceVBOMesh, // SF_VBO_MESH (void (*)(void *))Tess_SurfaceVBOMD5Mesh, // SF_VBO_MD5MESH #if defined(COMPAT_ET) (void (*)(void *))Tess_SurfaceVBOMDMMesh, // SF_VBO_MD5MESH #endif (void (*)(void *))Tess_SurfaceVBOMDVMesh // SF_VBO_MDVMESH };