openmohaa/code/game/g_mmove.cpp

627 lines
13 KiB
C++
Raw Normal View History

2016-03-27 11:49:47 +02:00
/*
===========================================================================
Copyright (C) 2015 the OpenMoHAA team
This file is part of OpenMoHAA source code.
OpenMoHAA source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
OpenMoHAA source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenMoHAA source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// g_mmove.cpp : AI/Path movement code.
//
#include "g_local.h"
#include "entity.h"
2023-01-29 20:59:31 +01:00
#include "game.h"
2016-03-27 11:49:47 +02:00
typedef struct {
qboolean validGroundTrace;
trace_t groundTrace;
float previous_origin[ 3 ];
float previous_velocity[ 3 ];
} mml_t;
mmove_t *mm;
mml_t mml;
void MM_ClipVelocity
(
float *in,
float *normal,
float *out,
float overbounce
)
{
float backoff;
float dir_z;
float normal2[ 3 ];
if( normal[ 2 ] >= 0.70f )
{
if( in[ 0 ] == 0.0f && in[ 1 ] == 0.0f )
{
VectorClear( out );
return;
}
normal2[ 0 ] = in[ 0 ] + DotProduct2D( in, normal );
normal2[ 1 ] = in[ 1 ] + DotProduct2D( in, normal );
normal2[ 2 ] = normal[ 2 ] * DotProduct2D( in, in );
VectorNormalize( normal2 );
dir_z = -normal2[ 2 ];
out[ 0 ] = in[ 0 ];
out[ 1 ] = in[ 1 ];
out[ 2 ] = DotProduct2D( in, normal2 ) / dir_z;
}
else
{
backoff = DotProduct( in, normal );
if( backoff < 0 )
backoff *= overbounce;
else
backoff /= overbounce;
out[ 0 ] = in[ 0 ] - normal[ 0 ] * backoff;
out[ 1 ] = in[ 1 ] - normal[ 1 ] * backoff;
out[ 2 ] = in[ 2 ] - normal[ 2 ] * backoff;
}
}
qboolean MM_AddTouchEnt
(
int entityNum
)
{
int i;
qboolean blockEnt;
Entity *ent;
if( entityNum == ENTITYNUM_NONE || entityNum == ENTITYNUM_WORLD ) {
return qtrue;
}
ent = G_GetEntity( entityNum );
blockEnt = ent->BlocksAIMovement();
if( !blockEnt )
{
if( ent->IsSubclassOfPlayer() )
{
mm->hit_temp_obstacle |= 1;
}
else if( ent->IsSubclassOfDoor() )
{
mm->hit_temp_obstacle |= 2;
}
}
// see if it is already added
for( i = 0; i < mm->numtouch; i++ )
{
if( mm->touchents[ i ] == entityNum )
return blockEnt;
}
// add it
mm->touchents[ mm->numtouch ] = entityNum;
mm->numtouch++;
return blockEnt;
}
qboolean MM_SlideMove
(
qboolean gravity
)
{
int bumpcount;
vec3_t dir;
float d;
int numplanes;
vec3_t planes[ 5 ];
vec3_t clipVelocity;
int i;
int j;
int k;
trace_t trace;
vec3_t end;
float time_left;
qboolean bBlockEnt;
if( gravity )
{
mm->velocity[ 2 ] = mm->velocity[ 2 ] - mm->frametime * sv_gravity->integer;
if( mm->groundPlane )
MM_ClipVelocity( mm->velocity, mm->groundPlaneNormal, mm->velocity, OVERCLIP );
}
time_left = mm->frametime;
if( mm->groundPlane ) {
numplanes = 1;
VectorCopy( mm->groundPlaneNormal, planes[ 0 ] );
} else {
numplanes = 0;
}
// never turn against original velocity
VectorNormalize2( mm->velocity, planes[ numplanes ] );
numplanes++;
for( bumpcount = 0; bumpcount < 4; bumpcount++ )
{
// calculate position we are trying to move to
VectorMA( mm->origin, time_left, mm->velocity, end );
// see if we can make it there
gi.Trace( &trace, mm->origin, mm->mins, mm->maxs, end, mm->entityNum, mm->tracemask, qtrue, qfalse );
if( trace.allsolid )
break;
if( trace.fraction > 0 ) {
// actually covered some distance
VectorCopy( trace.endpos, mm->origin );
}
if( trace.fraction == 1 )
return bumpcount != 0;
// save entity for contact
bBlockEnt = MM_AddTouchEnt( trace.entityNum );
if( trace.plane.normal[ 2 ] < MIN_WALK_NORMAL )
{
if( trace.plane.normal[ 2 ] > -0.999f && bBlockEnt && mm->groundPlane )
{
if( !mm->hit_obstacle )
{
mm->hit_obstacle = true;
VectorCopy( mm->origin, mm->hit_origin );
}
VectorAdd( mm->obstacle_normal, trace.plane.normal, mm->obstacle_normal );
}
}
else
{
memcpy( &mml.groundTrace, &trace, sizeof( mml.groundTrace ) );
mml.validGroundTrace = true;
}
time_left -= time_left * trace.fraction;
if( numplanes >= MAX_CLIP_PLANES )
{
VectorClear( mm->velocity );
return qtrue;
}
//
// if this is the same plane we hit before, nudge velocity
// out along it, which fixes some epsilon issues with
// non-axial planes
//
for( i = 0; i < numplanes; i++ )
{
if( DotProduct( trace.plane.normal, planes[ i ] ) > 0.99 )
{
VectorAdd( trace.plane.normal, mm->velocity, mm->velocity );
break;
}
}
if( i >= numplanes )
{
//
// modify velocity so it parallels all of the clip planes
//
// find a plane that it enters
for( i = 0; i < numplanes; i++ )
{
if( DotProduct( mm->velocity, planes[ i ] ) >= 0.1 ) {
continue; // move doesn't interact with the plane
}
// slide along the plane
MM_ClipVelocity( mm->velocity, planes[ i ], clipVelocity, OVERCLIP );
// see if there is a second plane that the new move enters
for( j = 0; j < numplanes; j++ )
{
if( j == i ) {
continue;
}
// slide along the plane
MM_ClipVelocity( mm->velocity, planes[ j ], clipVelocity, OVERCLIP );
if( DotProduct( clipVelocity, planes[ j ] ) >= 0.0f ) {
continue; // move doesn't interact with the plane
}
// slide the original velocity along the crease
CrossProduct( planes[ i ], planes[ j ], dir );
VectorNormalize( dir );
d = DotProduct( dir, mm->velocity );
VectorScale( dir, d, clipVelocity );
// see if there is a third plane the the new move enters
for( k = 0; k < numplanes; k++ )
{
if( k == i || k == j ) {
continue;
}
if( DotProduct( clipVelocity, planes[ k ] ) >= 0.1f ) {
continue; // move doesn't interact with the plane
}
// stop dead at a tripple plane interaction
VectorClear( mm->velocity );
return qtrue;
}
}
// if we have fixed all interactions, try another move
VectorCopy( clipVelocity, mm->velocity );
break;
}
}
}
if( mm->velocity[ 0 ] || mm->velocity[ 1 ] )
{
if( mm->groundPlane )
{
VectorCopy( mm->velocity, dir );
VectorNegate( dir, dir );
VectorNormalize( dir );
if( MM_AddTouchEnt( trace.entityNum ) )
{
if( !mm->hit_obstacle )
{
mm->hit_obstacle = true;
VectorCopy( mm->origin, mm->hit_origin );
}
VectorAdd( mm->obstacle_normal, dir, mm->obstacle_normal );
}
}
VectorClear( mm->velocity );
return true;
}
mm->velocity[ 2 ] = 0;
return false;
}
void MM_GroundTraceInternal
(
void
)
{
if( mml.groundTrace.fraction == 1.0f )
{
mm->groundPlane = qfalse;
mm->walking = qfalse;
return;
}
if( mm->velocity[ 2 ] > 0.0f )
{
if( DotProduct( mm->velocity, mml.groundTrace.plane.normal ) > 10.0f )
{
mm->groundPlane = qfalse;
mm->walking = qfalse;
return;
}
}
// slopes that are too steep will not be considered onground
if( mml.groundTrace.plane.normal[ 2 ] < MIN_WALK_NORMAL )
{
vec3_t oldvel;
float d;
VectorCopy( mm->velocity, oldvel );
VectorSet( mm->velocity, 0, 0, -1.0f / mm->frametime );
MM_SlideMove( qfalse );
d = VectorLength( mm->velocity );
VectorCopy( oldvel, mm->velocity );
if( d > ( 0.1f / mm->frametime ) )
{
mm->groundPlane = qtrue;
mm->walking = qfalse;
VectorCopy( mml.groundTrace.plane.normal, mm->groundPlaneNormal );
return;
}
}
mm->groundPlane = qtrue;
mm->walking = qtrue;
VectorCopy( mml.groundTrace.plane.normal, mm->groundPlaneNormal );
MM_AddTouchEnt( mml.groundTrace.entityNum );
}
void MM_GroundTrace
(
void
)
{
float point[ 3 ];
point[ 0 ] = mm->origin[ 0 ];
point[ 1 ] = mm->origin[ 1 ];
point[ 2 ] = mm->origin[ 2 ] - 0.25f;
gi.Trace( &mml.groundTrace, mm->origin, mm->mins, mm->maxs, point, mm->entityNum, mm->tracemask, qtrue, qfalse );
MM_GroundTraceInternal();
}
void MM_StepSlideMove
(
void
)
{
vec3_t start_o;
vec3_t start_v;
vec3_t nostep_o;
vec3_t nostep_v;
trace_t trace;
qboolean bWasOnGoodGround;
vec3_t up;
vec3_t down;
qboolean start_hit_wall;
vec3_t start_wall_normal;
qboolean first_hit_wall;
vec3_t first_wall_normal;
vec3_t start_hit_origin;
vec3_t first_hit_origin;
trace_t nostep_groundTrace;
VectorCopy( mm->origin, start_o );
VectorCopy( mm->velocity, start_v );
start_hit_wall = mm->hit_obstacle;
VectorCopy( mm->hit_origin, start_hit_origin );
VectorCopy( mm->obstacle_normal, start_wall_normal );
if( MM_SlideMove( qtrue ) == 0 )
{
if( !mml.validGroundTrace )
MM_GroundTrace();
return;
}
VectorCopy( start_o, down );
down[ 2 ] -= STEPSIZE;
gi.Trace( &trace, start_o, mm->mins, mm->maxs, down, mm->entityNum, mm->tracemask, qtrue, qfalse );
VectorSet( up, 0, 0, 1 );
// never step up when you still have up velocity
if( mm->velocity[ 2 ] > 0 && ( trace.fraction == 1.0f ||
DotProduct( trace.plane.normal, up ) < MIN_WALK_NORMAL ) )
{
if( !mml.validGroundTrace )
MM_GroundTrace();
else
MM_GroundTraceInternal();
return;
}
if( mm->groundPlane && mm->groundPlaneNormal[ 2 ] >= MIN_WALK_NORMAL )
bWasOnGoodGround = qtrue;
else
bWasOnGoodGround = qfalse;
VectorCopy( mm->origin, nostep_o );
VectorCopy( mm->velocity, nostep_v );
memcpy( &nostep_groundTrace, &mml.groundTrace, sizeof( trace_t ) );
VectorCopy( start_o, mm->origin );
VectorCopy( start_v, mm->velocity );
first_hit_wall = mm->hit_obstacle;
VectorCopy( mm->hit_origin, first_hit_origin );
VectorCopy( mm->obstacle_normal, first_wall_normal );
mm->hit_obstacle = start_hit_wall;
VectorCopy( start_hit_origin, mm->hit_origin );
VectorCopy( start_wall_normal, mm->obstacle_normal );
MM_SlideMove( qtrue );
VectorCopy( mm->origin, down );
down[ 2 ] -= STEPSIZE * 2;
// test the player position if they were a stepheight higher
gi.Trace( &trace, up, mm->mins, mm->maxs, up, mm->entityNum, mm->tracemask, qtrue, qfalse );
if( trace.entityNum > ENTITYNUM_NONE )
{
VectorCopy( nostep_o, mm->origin );
VectorCopy( nostep_v, mm->velocity );
memcpy( &mml.groundTrace, &nostep_groundTrace, sizeof( mml.groundTrace ) );
mm->hit_obstacle = first_hit_wall;
VectorCopy( first_hit_origin, mm->hit_origin );
VectorCopy( first_wall_normal, mm->obstacle_normal );
if( !mml.validGroundTrace )
MM_GroundTrace();
else
MM_GroundTraceInternal();
return;
}
if( !trace.allsolid )
{
memcpy( &mml.groundTrace, &trace, sizeof( mml.groundTrace ) );
mml.validGroundTrace = qtrue;
if( bWasOnGoodGround && trace.fraction && trace.plane.normal[ 2 ] < MIN_WALK_NORMAL )
{
VectorCopy( nostep_o, mm->origin );
VectorCopy( nostep_v, mm->velocity );
if( first_hit_wall )
{
mm->hit_obstacle = first_hit_wall;
VectorCopy( first_hit_origin, mm->hit_origin );
VectorCopy( first_wall_normal, mm->obstacle_normal );
}
MM_GroundTraceInternal();
return;
}
VectorCopy( trace.endpos, mm->origin );
}
if( trace.fraction < 1.0f )
MM_ClipVelocity( mm->velocity, trace.plane.normal, mm->velocity, OVERCLIP );
if( !mml.validGroundTrace )
MM_GroundTrace();
else
MM_GroundTraceInternal();
}
void MM_ClipVelocity2D
(
float *in,
float *normal,
float *out,
float overbounce
)
{
float backoff;
float dir_z;
float normal2[ 3 ];
if( normal[ 2 ] >= 0.70f )
{
if( in[ 0 ] == 0.0f && in[ 1 ] == 0.0f )
{
VectorClear( out );
return;
}
normal2[ 0 ] = in[ 0 ] + DotProduct2D( in, normal );
normal2[ 1 ] = in[ 1 ] + DotProduct2D( in, normal );
normal2[ 2 ] = normal[ 2 ] * DotProduct2D( in, in );
VectorNormalize( normal2 );
dir_z = -normal2[ 2 ];
out[ 0 ] = in[ 0 ];
out[ 1 ] = in[ 1 ];
out[ 2 ] = DotProduct2D( in, normal2 ) / -normal2[ 2 ];
}
else
{
backoff = DotProduct2D( in, normal );
if( backoff < 0 )
backoff *= overbounce;
else
backoff /= overbounce;
out[ 0 ] = in[ 0 ] - normal[ 0 ] * backoff;
out[ 1 ] = in[ 1 ] - normal[ 1 ] * backoff;
out[ 2 ] = -( backoff * normal[ 2 ] );
}
}
void MmoveSingle
(
mmove_t *mmove
)
{
float point[ 3 ];
trace_t trace;
mm = mmove;
mmove->hit_obstacle = false;
mmove->numtouch = false;
VectorCopy( vec_origin, mmove->obstacle_normal );
mmove->hit_temp_obstacle = false;
memset( &mml, 0, sizeof( mml_t ) );
VectorCopy( mmove->origin, mml.previous_origin );
VectorCopy( mmove->velocity, mml.previous_velocity );
if( mmove->walking )
{
if( mmove->desired_speed < 1.0f )
{
MM_GroundTrace();
return;
}
float wishdir[ 3 ];
MM_ClipVelocity2D( mm->desired_dir, mm->groundPlaneNormal, wishdir, OVERCLIP );
VectorNormalize( wishdir );
mm->velocity[ 0 ] = mm->desired_speed * wishdir[ 0 ];
mm->velocity[ 1 ] = mm->desired_speed * wishdir[ 1 ];
}
else if( mmove->groundPlane )
{
MM_ClipVelocity( mmove->velocity, mmove->groundPlaneNormal, mmove->velocity, OVERCLIP );
}
MM_StepSlideMove();
if( !mm->walking && mml.previous_velocity[ 2 ] >= 0.0f && mm->velocity[ 2 ] <= 0.0f )
{
point[ 0 ] = mmove->origin[ 0 ];
point[ 1 ] = mmove->origin[ 1 ];
point[ 2 ] = mmove->origin[ 2 ] - 18.0f;
gi.Trace( &trace, mm->origin, mm->mins, mm->maxs, point, mm->entityNum, mm->tracemask, qtrue, qfalse );
if( trace.fraction < 1.0f && !trace.allsolid )
{
MM_GroundTrace();
return;
}
}
}