openmohaa/code/renderer/tr_shade_calc.c

1285 lines
30 KiB
C
Raw Normal View History

2023-05-08 14:33:37 +02:00
/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Foobar; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_shade_calc.c
#include "tr_local.h"
#define WAVEVALUE( table, base, amplitude, phase, freq ) ((base) + table[ myftol( ( ( (phase) + tess.shaderTime * (freq) ) * FUNCTABLE_SIZE ) ) & FUNCTABLE_MASK ] * (amplitude))
static float *TableForFunc( genFunc_t func )
{
switch ( func )
{
case GF_SIN:
return tr.sinTable;
case GF_TRIANGLE:
return tr.triangleTable;
case GF_SQUARE:
return tr.squareTable;
case GF_SAWTOOTH:
return tr.sawToothTable;
case GF_INVERSE_SAWTOOTH:
return tr.inverseSawToothTable;
case GF_NONE:
default:
break;
}
ri.Error( ERR_DROP, "TableForFunc called with invalid function '%d' in shader '%s'\n", func, tess.shader->name );
return NULL;
}
/*
** EvalWaveForm
**
** Evaluates a given waveForm_t, referencing backEnd.refdef.time directly
*/
static float EvalWaveForm( const waveForm_t *wf )
{
float *table;
table = TableForFunc( wf->func );
return WAVEVALUE( table, wf->base, wf->amplitude, wf->phase, wf->frequency );
}
static float EvalWaveFormClamped( const waveForm_t *wf )
{
float glow = EvalWaveForm( wf );
if ( glow < 0 )
{
return 0;
}
if ( glow > 1 )
{
return 1;
}
return glow;
}
/*
** RB_CalcStretchTexCoords
*/
void RB_CalcStretchTexCoords( const waveForm_t *wf, float *st )
{
float p;
texModInfo_t tmi;
p = 1.0f / EvalWaveForm( wf );
tmi.matrix[0][0] = p;
tmi.matrix[1][0] = 0;
tmi.translate[0] = 0.5f - 0.5f * p;
tmi.matrix[0][1] = 0;
tmi.matrix[1][1] = p;
tmi.translate[1] = 0.5f - 0.5f * p;
RB_CalcTransformTexCoords( &tmi, st );
}
/*
====================================================================
DEFORMATIONS
====================================================================
*/
/*
========================
RB_CalcDeformVertexes
========================
*/
void RB_CalcDeformVertexes( deformStage_t *ds )
{
int i;
vec3_t offset;
float scale;
float *xyz = ( float * ) tess.xyz;
float *normal = ( float * ) tess.normal;
float *table;
if ( ds->deformationWave.frequency == 0 )
{
scale = EvalWaveForm( &ds->deformationWave );
for ( i = 0; i < tess.numVertexes; i++, xyz += 4, normal += 4 )
{
VectorScale( normal, scale, offset );
xyz[0] += offset[0];
xyz[1] += offset[1];
xyz[2] += offset[2];
}
}
else
{
table = TableForFunc( ds->deformationWave.func );
for ( i = 0; i < tess.numVertexes; i++, xyz += 4, normal += 4 )
{
float off = ( xyz[0] + xyz[1] + xyz[2] ) * ds->deformationSpread;
scale = WAVEVALUE( table, ds->deformationWave.base,
ds->deformationWave.amplitude,
ds->deformationWave.phase + off,
ds->deformationWave.frequency );
VectorScale( normal, scale, offset );
xyz[0] += offset[0];
xyz[1] += offset[1];
xyz[2] += offset[2];
}
}
}
2023-05-16 14:12:47 +02:00
void RB_CalcFlapVertexes(deformStage_t* ds, texDirection_t coordsToUse) {
// FIXME: unimplemented
}
2023-05-08 14:33:37 +02:00
/*
=========================
RB_CalcDeformNormals
Wiggle the normals for wavy environment mapping
=========================
*/
void RB_CalcDeformNormals( deformStage_t *ds ) {
int i;
float scale;
float *xyz = ( float * ) tess.xyz;
float *normal = ( float * ) tess.normal;
for ( i = 0; i < tess.numVertexes; i++, xyz += 4, normal += 4 ) {
scale = 0.98f;
scale = R_NoiseGet4f( xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
tess.shaderTime * ds->deformationWave.frequency );
normal[ 0 ] += ds->deformationWave.amplitude * scale;
scale = 0.98f;
scale = R_NoiseGet4f( 100 + xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
tess.shaderTime * ds->deformationWave.frequency );
normal[ 1 ] += ds->deformationWave.amplitude * scale;
scale = 0.98f;
scale = R_NoiseGet4f( 200 + xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
tess.shaderTime * ds->deformationWave.frequency );
normal[ 2 ] += ds->deformationWave.amplitude * scale;
VectorNormalizeFast( normal );
}
}
/*
========================
RB_CalcBulgeVertexes
========================
*/
void RB_CalcBulgeVertexes( deformStage_t *ds ) {
int i;
const float *st = ( const float * ) tess.texCoords[0];
float *xyz = ( float * ) tess.xyz;
float *normal = ( float * ) tess.normal;
float now;
now = backEnd.refdef.time * ds->bulgeSpeed * 0.001f;
for ( i = 0; i < tess.numVertexes; i++, xyz += 4, st += 4, normal += 4 ) {
int off;
float scale;
off = (float)( FUNCTABLE_SIZE / (M_PI*2) ) * ( st[0] * ds->bulgeWidth + now );
scale = tr.sinTable[ off & FUNCTABLE_MASK ] * ds->bulgeHeight;
xyz[0] += normal[0] * scale;
xyz[1] += normal[1] * scale;
xyz[2] += normal[2] * scale;
}
}
/*
======================
RB_CalcMoveVertexes
A deformation that can move an entire surface along a wave path
======================
*/
void RB_CalcMoveVertexes( deformStage_t *ds ) {
int i;
float *xyz;
float *table;
float scale;
vec3_t offset;
table = TableForFunc( ds->deformationWave.func );
scale = WAVEVALUE( table, ds->deformationWave.base,
ds->deformationWave.amplitude,
ds->deformationWave.phase,
ds->deformationWave.frequency );
VectorScale( ds->moveVector, scale, offset );
xyz = ( float * ) tess.xyz;
for ( i = 0; i < tess.numVertexes; i++, xyz += 4 ) {
VectorAdd( xyz, offset, xyz );
}
}
/*
=============
DeformText
Change a polygon into a bunch of text polygons
=============
*/
void DeformText( const char *text ) {
int i;
vec3_t origin, width, height;
size_t len;
2023-05-08 14:33:37 +02:00
int ch;
byte color[4];
float bottom, top;
vec3_t mid;
height[0] = 0;
height[1] = 0;
height[2] = -1;
CrossProduct( tess.normal[0], height, width );
// find the midpoint of the box
VectorClear( mid );
bottom = 999999;
top = -999999;
for ( i = 0 ; i < 4 ; i++ ) {
VectorAdd( tess.xyz[i], mid, mid );
if ( tess.xyz[i][2] < bottom ) {
bottom = tess.xyz[i][2];
}
if ( tess.xyz[i][2] > top ) {
top = tess.xyz[i][2];
}
}
VectorScale( mid, 0.25f, origin );
// determine the individual character size
height[0] = 0;
height[1] = 0;
height[2] = ( top - bottom ) * 0.5f;
VectorScale( width, height[2] * -0.75f, width );
// determine the starting position
len = strlen( text );
VectorMA( origin, (len-1), width, origin );
// clear the shader indexes
tess.numIndexes = 0;
tess.numVertexes = 0;
color[0] = color[1] = color[2] = color[3] = 255;
// draw each character
for ( i = 0 ; i < len ; i++ ) {
ch = text[i];
ch &= 255;
if ( ch != ' ' ) {
int row, col;
float frow, fcol, size;
row = ch>>4;
col = ch&15;
frow = row*0.0625f;
fcol = col*0.0625f;
size = 0.0625f;
RB_AddQuadStampExt( origin, width, height, color, fcol, frow, fcol + size, frow + size );
}
VectorMA( origin, -2, width, origin );
}
}
/*
==================
GlobalVectorToLocal
==================
*/
static void GlobalVectorToLocal( const vec3_t in, vec3_t out ) {
2023-05-11 22:48:13 +02:00
out[0] = DotProduct( in, backEnd.ori.axis[0] );
out[1] = DotProduct( in, backEnd.ori.axis[1] );
out[2] = DotProduct( in, backEnd.ori.axis[2] );
2023-05-08 14:33:37 +02:00
}
/*
=====================
AutospriteDeform
Assuming all the triangles for this shader are independant
quads, rebuild them as forward facing sprites
=====================
*/
static void AutospriteDeform( void ) {
int i;
int oldVerts;
float *xyz;
vec3_t mid, delta;
float radius;
vec3_t left, up;
vec3_t leftDir, upDir;
if ( tess.numVertexes & 3 ) {
ri.Printf( PRINT_WARNING, "Autosprite shader %s had odd vertex count", tess.shader->name );
}
if ( tess.numIndexes != ( tess.numVertexes >> 2 ) * 6 ) {
ri.Printf( PRINT_WARNING, "Autosprite shader %s had odd index count", tess.shader->name );
}
oldVerts = tess.numVertexes;
tess.numVertexes = 0;
tess.numIndexes = 0;
if ( backEnd.currentEntity != &tr.worldEntity ) {
2023-05-11 22:48:13 +02:00
GlobalVectorToLocal( backEnd.viewParms.ori.axis[1], leftDir );
GlobalVectorToLocal( backEnd.viewParms.ori.axis[2], upDir );
2023-05-08 14:33:37 +02:00
} else {
2023-05-11 22:48:13 +02:00
VectorCopy( backEnd.viewParms.ori.axis[1], leftDir );
VectorCopy( backEnd.viewParms.ori.axis[2], upDir );
2023-05-08 14:33:37 +02:00
}
for ( i = 0 ; i < oldVerts ; i+=4 ) {
// find the midpoint
xyz = tess.xyz[i];
mid[0] = 0.25f * (xyz[0] + xyz[4] + xyz[8] + xyz[12]);
mid[1] = 0.25f * (xyz[1] + xyz[5] + xyz[9] + xyz[13]);
mid[2] = 0.25f * (xyz[2] + xyz[6] + xyz[10] + xyz[14]);
VectorSubtract( xyz, mid, delta );
radius = VectorLength( delta ) * 0.707f; // / sqrt(2)
VectorScale( leftDir, radius, left );
VectorScale( upDir, radius, up );
if ( backEnd.viewParms.isMirror ) {
VectorSubtract( vec3_origin, left, left );
}
// compensate for scale in the axes if necessary
if ( backEnd.currentEntity->e.nonNormalizedAxes ) {
float axisLength;
axisLength = VectorLength( backEnd.currentEntity->e.axis[0] );
if ( !axisLength ) {
axisLength = 0;
} else {
axisLength = 1.0f / axisLength;
}
VectorScale(left, axisLength, left);
VectorScale(up, axisLength, up);
}
RB_AddQuadStamp( mid, left, up, tess.vertexColors[i] );
}
}
/*
=====================
Autosprite2Deform
Autosprite2 will pivot a rectangular quad along the center of its long axis
=====================
*/
int edgeVerts[6][2] = {
{ 0, 1 },
{ 0, 2 },
{ 0, 3 },
{ 1, 2 },
{ 1, 3 },
{ 2, 3 }
};
static void Autosprite2Deform( void ) {
int i, j, k;
int indexes;
float *xyz;
vec3_t forward;
if ( tess.numVertexes & 3 ) {
ri.Printf( PRINT_WARNING, "Autosprite2 shader %s had odd vertex count", tess.shader->name );
}
if ( tess.numIndexes != ( tess.numVertexes >> 2 ) * 6 ) {
ri.Printf( PRINT_WARNING, "Autosprite2 shader %s had odd index count", tess.shader->name );
}
if ( backEnd.currentEntity != &tr.worldEntity ) {
2023-05-11 22:48:13 +02:00
GlobalVectorToLocal( backEnd.viewParms.ori.axis[0], forward );
2023-05-08 14:33:37 +02:00
} else {
2023-05-11 22:48:13 +02:00
VectorCopy( backEnd.viewParms.ori.axis[0], forward );
2023-05-08 14:33:37 +02:00
}
// this is a lot of work for two triangles...
// we could precalculate a lot of it is an issue, but it would mess up
// the shader abstraction
for ( i = 0, indexes = 0 ; i < tess.numVertexes ; i+=4, indexes+=6 ) {
float lengths[2];
int nums[2];
vec3_t mid[2];
vec3_t major, minor;
float *v1, *v2;
// find the midpoint
xyz = tess.xyz[i];
// identify the two shortest edges
nums[0] = nums[1] = 0;
lengths[0] = lengths[1] = 999999;
for ( j = 0 ; j < 6 ; j++ ) {
float l;
vec3_t temp;
v1 = xyz + 4 * edgeVerts[j][0];
v2 = xyz + 4 * edgeVerts[j][1];
VectorSubtract( v1, v2, temp );
l = DotProduct( temp, temp );
if ( l < lengths[0] ) {
nums[1] = nums[0];
lengths[1] = lengths[0];
nums[0] = j;
lengths[0] = l;
} else if ( l < lengths[1] ) {
nums[1] = j;
lengths[1] = l;
}
}
for ( j = 0 ; j < 2 ; j++ ) {
v1 = xyz + 4 * edgeVerts[nums[j]][0];
v2 = xyz + 4 * edgeVerts[nums[j]][1];
mid[j][0] = 0.5f * (v1[0] + v2[0]);
mid[j][1] = 0.5f * (v1[1] + v2[1]);
mid[j][2] = 0.5f * (v1[2] + v2[2]);
}
// find the vector of the major axis
VectorSubtract( mid[1], mid[0], major );
// cross this with the view direction to get minor axis
CrossProduct( major, forward, minor );
VectorNormalize( minor );
// re-project the points
for ( j = 0 ; j < 2 ; j++ ) {
float l;
v1 = xyz + 4 * edgeVerts[nums[j]][0];
v2 = xyz + 4 * edgeVerts[nums[j]][1];
l = 0.5 * sqrt( lengths[j] );
// we need to see which direction this edge
// is used to determine direction of projection
for ( k = 0 ; k < 5 ; k++ ) {
if ( tess.indexes[ indexes + k ] == i + edgeVerts[nums[j]][0]
&& tess.indexes[ indexes + k + 1 ] == i + edgeVerts[nums[j]][1] ) {
break;
}
}
if ( k == 5 ) {
VectorMA( mid[j], l, minor, v1 );
VectorMA( mid[j], -l, minor, v2 );
} else {
VectorMA( mid[j], -l, minor, v1 );
VectorMA( mid[j], l, minor, v2 );
}
}
}
}
2023-05-16 14:12:47 +02:00
static void LightGlowDeform() {
2023-05-29 13:47:41 +02:00
int i;
int oldVerts;
float* xyz;
vec3_t mid, delta;
float radius, dist, ofs;
vec3_t forward, left, up;
vec3_t leftDir, upDir;
if (tess.numVertexes & 3) {
ri.Printf(PRINT_WARNING, "LightGlowDeform shader %s had odd vertex count", tess.shader->name);
}
if (tess.numIndexes != (tess.numVertexes >> 2) * 6) {
ri.Printf(PRINT_WARNING, "LightGlowDeform shader %s had odd index count", tess.shader->name);
}
oldVerts = tess.numVertexes;
tess.numVertexes = 0;
tess.numIndexes = 0;
if (backEnd.currentEntity == &tr.worldEntity)
{
VectorCopy(backEnd.viewParms.ori.axis[1], leftDir);
VectorCopy(backEnd.viewParms.ori.axis[2], upDir);
}
else
{
GlobalVectorToLocal(backEnd.viewParms.ori.axis[1], leftDir);
GlobalVectorToLocal(backEnd.viewParms.ori.axis[2], upDir);
}
for (i = 0; i < oldVerts; i += 4)
{
xyz = tess.xyz[i];
mid[0] = (xyz[0] + xyz[4] + xyz[8] + xyz[12]) * 0.25f;
mid[1] = (xyz[1] + xyz[5] + xyz[9] + xyz[13]) * 0.25f;
mid[2] = (xyz[2] + xyz[6] + xyz[10] + xyz[14]) * 0.25f;
VectorSubtract(xyz, mid, delta);
radius = VectorLength(delta) * 0.707f;
VectorAdd(mid, backEnd.ori.origin, delta);
VectorSubtract(backEnd.viewParms.ori.origin, delta, forward);
dist = VectorNormalize(forward) - 4.0;
VectorScale(forward, radius, forward);
VectorScale(leftDir, radius, left);
VectorScale(upDir, radius, up);
if (backEnd.viewParms.isMirror)
{
VectorSubtract(vec3_origin, forward, forward);
VectorSubtract(vec3_origin, left, left);
}
if (backEnd.currentStaticModel || backEnd.currentEntity->e.nonNormalizedAxes)
{
float axisLength;
if (backEnd.currentStaticModel) {
axisLength = VectorLength(backEnd.currentStaticModel->axis[0]);
} else {
axisLength = VectorLength(backEnd.currentEntity->e.axis[0]);
}
if (axisLength != 0.0f) {
VectorScale(forward, axisLength, forward);
VectorScale(left, axisLength, left);
VectorScale(up, axisLength, up);
} else {
VectorClear(forward);
VectorClear(left);
VectorClear(up);
}
}
ofs = VectorLength(forward);
if (ofs > dist)
{
VectorNormalizeFast(forward);
VectorScale(forward, dist, forward);
}
VectorAdd(mid, forward, mid);
RB_AddQuadStamp(mid, left, up, tess.vertexColors[i]);
}
2023-05-16 14:12:47 +02:00
}
2023-05-08 14:33:37 +02:00
/*
=====================
RB_DeformTessGeometry
=====================
*/
void RB_DeformTessGeometry( void ) {
int i;
deformStage_t *ds;
for ( i = 0 ; i < tess.shader->numDeforms ; i++ ) {
ds = &tess.shader->deforms[ i ];
switch ( ds->deformation ) {
case DEFORM_NONE:
break;
case DEFORM_NORMALS:
RB_CalcDeformNormals( ds );
break;
case DEFORM_WAVE:
RB_CalcDeformVertexes( ds );
break;
case DEFORM_BULGE:
RB_CalcBulgeVertexes( ds );
break;
case DEFORM_MOVE:
RB_CalcMoveVertexes( ds );
break;
case DEFORM_AUTOSPRITE:
AutospriteDeform();
break;
case DEFORM_AUTOSPRITE2:
Autosprite2Deform();
break;
2023-05-16 14:12:47 +02:00
case DEFORM_LIGHTGLOW:
LightGlowDeform();
break;
case DEFORM_FLAP_S:
RB_CalcFlapVertexes(ds, USE_S_COORDS);
break;
case DEFORM_FLAP_T:
RB_CalcFlapVertexes(ds, USE_T_COORDS);
2023-05-08 14:33:37 +02:00
break;
}
}
}
/*
====================================================================
COLORS
====================================================================
*/
/*
** RB_CalcColorFromEntity
*/
void RB_CalcColorFromEntity( unsigned char *dstColors )
{
int i;
int *pColors = ( int * ) dstColors;
int c;
if ( !backEnd.currentEntity )
return;
c = * ( int * ) backEnd.currentEntity->e.shaderRGBA;
for ( i = 0; i < tess.numVertexes; i++, pColors++ )
{
*pColors = c;
}
}
/*
** RB_CalcColorFromOneMinusEntity
*/
void RB_CalcColorFromOneMinusEntity( unsigned char *dstColors )
{
int i;
int *pColors = ( int * ) dstColors;
2023-05-22 02:38:43 +02:00
unsigned char invModulate[4];
2023-05-08 14:33:37 +02:00
int c;
if ( !backEnd.currentEntity )
return;
invModulate[0] = 255 - backEnd.currentEntity->e.shaderRGBA[0];
invModulate[1] = 255 - backEnd.currentEntity->e.shaderRGBA[1];
invModulate[2] = 255 - backEnd.currentEntity->e.shaderRGBA[2];
invModulate[3] = 255 - backEnd.currentEntity->e.shaderRGBA[3]; // this trashes alpha, but the AGEN block fixes it
c = * ( int * ) invModulate;
for ( i = 0; i < tess.numVertexes; i++, pColors++ )
{
*pColors = * ( int * ) invModulate;
}
}
/*
** RB_CalcColorFromConstant
*/
void RB_CalcColorFromConstant(unsigned char* dstColors, unsigned char* constantColor)
{
int i;
for (i = 0; i < tess.numVertexes; i++) {
dstColors[i * 4] = constantColor[0];
dstColors[i * 4 + 1] = constantColor[1];
dstColors[i * 4 + 2] = constantColor[2];
dstColors[i * 4 + 3] = constantColor[3];
}
}
void RB_CalcRGBFromDot(unsigned char* colors, float alphaMin, float alphaMax)
{
// FIXME: unimplemented
}
void RB_CalcRGBFromOneMinusDot(unsigned char* colors, float alphaMin, float alphaMax)
{
// FIXME: unimplemented
}
void RB_CalcAlphaFromConstant(unsigned char* dstColors, int constantAlpha)
{
int i;
for (i = 0; i < tess.numVertexes; i++) {
dstColors[i * 4 + 3] = constantAlpha;
}
}
void RB_CalcAlphaFromDot(unsigned char* colors, float alphaMin, float alphaMax)
{
// FIXME: unimplemented
}
void RB_CalcAlphaFromOneMinusDot(unsigned char* colors, float alphaMin, float alphaMax)
{
// FIXME: unimplemented
}
void RB_CalcAlphaFromTexCoords(unsigned char* colors, float alphaMin, float alphaMax, int alphaMinCap, int alphaCap, float sWeight, float tWeight, float* st)
{
// FIXME: unimplemented
}
void RB_CalcRGBFromTexCoords(unsigned char* colors, float alphaMin, float alphaMax, int alphaMinCap, int alphaCap, float sWeight, float tWeight, float* st)
{
// FIXME: unimplemented
}
2023-05-08 14:33:37 +02:00
/*
** RB_CalcAlphaFromEntity
*/
void RB_CalcAlphaFromEntity( unsigned char *dstColors )
{
int i;
if ( !backEnd.currentEntity )
return;
dstColors += 3;
for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 )
{
*dstColors = backEnd.currentEntity->e.shaderRGBA[3];
}
}
/*
** RB_CalcAlphaFromOneMinusEntity
*/
void RB_CalcAlphaFromOneMinusEntity( unsigned char *dstColors )
{
int i;
if ( !backEnd.currentEntity )
return;
dstColors += 3;
for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 )
{
*dstColors = 0xff - backEnd.currentEntity->e.shaderRGBA[3];
}
}
/*
** RB_CalcWaveColor
*/
void RB_CalcWaveColor(const waveForm_t* wf, unsigned char* dstColors, unsigned char* constantColor)
2023-05-08 14:33:37 +02:00
{
int i;
int v;
float glow;
int *colors = ( int * ) dstColors;
byte color[4];
if ( wf->func == GF_NOISE ) {
glow = wf->base + R_NoiseGet4f( 0, 0, 0, ( tess.shaderTime + wf->phase ) * wf->frequency ) * wf->amplitude;
} else {
glow = EvalWaveForm( wf ) * tr.identityLight;
}
if ( glow < 0 ) {
glow = 0;
}
else if ( glow > 1 ) {
glow = 1;
}
if (constantColor)
{
color[0] = constantColor[0] * glow;
color[1] = constantColor[1] * glow;
color[2] = constantColor[2] * glow;
}
else
{
v = myftol(255 * glow);
color[0] = color[1] = color[2] = v;
}
2023-05-08 14:33:37 +02:00
color[3] = 255;
v = *(int*)color;
2023-05-08 14:33:37 +02:00
for ( i = 0; i < tess.numVertexes; i++, colors++ ) {
*colors = v;
}
}
/*
** RB_CalcWaveAlpha
*/
void RB_CalcWaveAlpha( const waveForm_t *wf, unsigned char *dstColors )
{
int i;
int v;
float glow;
glow = EvalWaveFormClamped( wf );
v = 255 * glow;
for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 )
{
dstColors[3] = v;
}
}
/*
====================================================================
TEX COORDS
====================================================================
*/
/*
** RB_CalcEnvironmentTexCoords
*/
void RB_CalcEnvironmentTexCoords( float *st )
{
int i;
float *v, *normal;
vec3_t viewer, reflected;
float d;
v = tess.xyz[0];
normal = tess.normal[0];
for (i = 0 ; i < tess.numVertexes ; i++, v += 4, normal += 4, st += 2 )
{
2023-05-11 22:48:13 +02:00
VectorSubtract (backEnd.ori.viewOrigin, v, viewer);
2023-05-08 14:33:37 +02:00
VectorNormalizeFast (viewer);
d = DotProduct (normal, viewer);
reflected[0] = normal[0]*2*d - viewer[0];
reflected[1] = normal[1]*2*d - viewer[1];
reflected[2] = normal[2]*2*d - viewer[2];
st[0] = 0.5 + reflected[1] * 0.5;
st[1] = 0.5 - reflected[2] * 0.5;
}
}
/*
** RB_CalcEnvironmentTexCoords
*/
void RB_CalcEnvironmentTexCoords2(float* st)
{
int i;
float* v, * normal;
vec3_t viewer, reflected;
float d;
v = tess.xyz[0];
normal = tess.normal[0];
for (i = 0; i < tess.numVertexes; i++, v += 4, normal += 4, st += 2)
{
VectorSubtract(backEnd.ori.viewOrigin, v, viewer);
VectorNormalizeFast(viewer);
d = DotProduct(normal, viewer);
// FIXME: use axis
reflected[0] = normal[0] * 2 * d - viewer[0];
reflected[1] = normal[1] * 2 * d - viewer[1];
reflected[2] = normal[2] * 2 * d - viewer[2];
st[0] = 0.5 + reflected[1] * 0.5;
st[1] = 0.5 - reflected[2] * 0.5;
}
}
2023-05-08 14:33:37 +02:00
/*
** RB_CalcTurbulentTexCoords
*/
void RB_CalcTurbulentTexCoords( const waveForm_t *wf, float *st )
{
int i;
float now;
now = ( wf->phase + tess.shaderTime * wf->frequency );
for ( i = 0; i < tess.numVertexes; i++, st += 2 )
{
float s = st[0];
float t = st[1];
st[0] = s + tr.sinTable[ ( ( int ) ( ( ( tess.xyz[i][0] + tess.xyz[i][2] )* 1.0/128 * 0.125 + now ) * FUNCTABLE_SIZE ) ) & ( FUNCTABLE_MASK ) ] * wf->amplitude;
st[1] = t + tr.sinTable[ ( ( int ) ( ( tess.xyz[i][1] * 1.0/128 * 0.125 + now ) * FUNCTABLE_SIZE ) ) & ( FUNCTABLE_MASK ) ] * wf->amplitude;
}
}
/*
** RB_CalcScaleTexCoords
*/
void RB_CalcScaleTexCoords( const float scale[2], float *st )
{
int i;
for ( i = 0; i < tess.numVertexes; i++, st += 2 )
{
st[0] *= scale[0];
st[1] *= scale[1];
}
}
/*
** RB_CalcScrollTexCoords
*/
void RB_CalcScrollTexCoords( const float scrollSpeed[2], float *st )
{
int i;
float timeScale = tess.shaderTime;
float adjustedScrollS, adjustedScrollT;
adjustedScrollS = scrollSpeed[0] * timeScale;
adjustedScrollT = scrollSpeed[1] * timeScale;
// clamp so coordinates don't continuously get larger, causing problems
// with hardware limits
adjustedScrollS = adjustedScrollS - floor( adjustedScrollS );
adjustedScrollT = adjustedScrollT - floor( adjustedScrollT );
for ( i = 0; i < tess.numVertexes; i++, st += 2 )
{
st[0] += adjustedScrollS;
st[1] += adjustedScrollT;
}
}
/*
** RB_CalcTransformTexCoords
*/
void RB_CalcTransformTexCoords( const texModInfo_t *tmi, float *st )
{
int i;
for ( i = 0; i < tess.numVertexes; i++, st += 2 )
{
float s = st[0];
float t = st[1];
st[0] = s * tmi->matrix[0][0] + t * tmi->matrix[1][0] + tmi->translate[0];
st[1] = s * tmi->matrix[0][1] + t * tmi->matrix[1][1] + tmi->translate[1];
}
}
/*
** RB_CalcRotateTexCoords
*/
void RB_CalcRotateTexCoords( float degsPerSecond, float *st )
{
float timeScale = tess.shaderTime;
float degs;
int index;
float sinValue, cosValue;
texModInfo_t tmi;
degs = -degsPerSecond * timeScale;
index = degs * ( FUNCTABLE_SIZE / 360.0f );
sinValue = tr.sinTable[ index & FUNCTABLE_MASK ];
cosValue = tr.sinTable[ ( index + FUNCTABLE_SIZE / 4 ) & FUNCTABLE_MASK ];
tmi.matrix[0][0] = cosValue;
tmi.matrix[1][0] = -sinValue;
tmi.translate[0] = 0.5 - 0.5 * cosValue + 0.5 * sinValue;
tmi.matrix[0][1] = sinValue;
tmi.matrix[1][1] = cosValue;
tmi.translate[1] = 0.5 - 0.5 * sinValue - 0.5 * cosValue;
RB_CalcTransformTexCoords( &tmi, st );
}
#if id386 && !( (defined __linux__ || defined __FreeBSD__ ) && (defined __i386__ ) ) // rb010123
long myftol( float f ) {
static int tmp;
__asm fld f
__asm fistp tmp
__asm mov eax, tmp
}
#endif
/*
** RB_CalcSpecularAlpha
**
** Calculates specular coefficient and places it in the alpha channel
*/
vec3_t lightOrigin = { -960, 1980, 96 }; // FIXME: track dynamically
void RB_CalcSpecularAlpha(unsigned char* alphas, float alphaMax, vec3_t lightOrigin) {
2023-05-08 14:33:37 +02:00
int i;
float *v, *normal;
vec3_t viewer, reflected;
float l, d;
int b;
vec3_t lightDir;
int numVertexes;
v = tess.xyz[0];
normal = tess.normal[0];
alphas += 3;
numVertexes = tess.numVertexes;
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4, alphas += 4) {
float ilength;
VectorSubtract( lightOrigin, v, lightDir );
// ilength = Q_rsqrt( DotProduct( lightDir, lightDir ) );
VectorNormalizeFast( lightDir );
// calculate the specular color
d = DotProduct (normal, lightDir);
// d *= ilength;
// we don't optimize for the d < 0 case since this tends to
// cause visual artifacts such as faceted "snapping"
reflected[0] = normal[0]*2*d - lightDir[0];
reflected[1] = normal[1]*2*d - lightDir[1];
reflected[2] = normal[2]*2*d - lightDir[2];
2023-05-11 22:48:13 +02:00
VectorSubtract (backEnd.ori.viewOrigin, v, viewer);
2023-05-08 14:33:37 +02:00
ilength = Q_rsqrt( DotProduct( viewer, viewer ) );
l = DotProduct (reflected, viewer);
l *= ilength;
if (l < 0) {
b = 0;
} else {
l = l*l;
l = l*l;
b = l * 255;
if (b > 255) {
b = 255;
}
}
*alphas = b;
}
}
2023-05-15 14:21:16 +02:00
void RB_CalcLightGridColor(unsigned char* colors)
{
int i;
if (!backEnd.currentEntity) {
for (i = 0; i < tess.numVertexes; i++) {
colors[i * 4] = backEnd.currentStaticModel->iGridLighting;
colors[i * 4 + 1] = backEnd.currentStaticModel->iGridLighting;
colors[i * 4 + 2] = backEnd.currentStaticModel->iGridLighting;
colors[i * 4 + 3] = backEnd.currentStaticModel->iGridLighting;
}
}
else if (backEnd.currentEntity != &tr.worldEntity) {
for (i = 0; i < tess.numVertexes; i++) {
colors[i * 4] = backEnd.currentEntity->iGridLighting;
colors[i * 4 + 1] = backEnd.currentEntity->iGridLighting;
colors[i * 4 + 2] = backEnd.currentEntity->iGridLighting;
colors[i * 4 + 3] = backEnd.currentEntity->iGridLighting;
}
}
else {
Com_Printf(
"##### shader '%s' incorrectly uses rgbGen lightingGrid or lightingSpherical; was rgbGen vertex intended?\n",
tess.shader->name);
for (i = 0; i < tess.numVertexes; i++) {
colors[i * 4] = 0xFF;
colors[i * 4 + 1] = 0xFF;
colors[i * 4 + 2] = 0xFF;
colors[i * 4 + 3] = 0xFF;
}
}
2023-05-15 14:21:16 +02:00
}
void RB_CalcAlphaFromDotView(unsigned char* colors, float alphaMin, float alphaMax)
{
// FIXME/ unimplemented
}
void RB_CalcAlphaFromOneMinusDotView(unsigned char* colors, float alphaMin, float alphaMax)
{
// FIXME/ unimplemented
}
2023-05-08 14:33:37 +02:00
/*
** RB_CalcDiffuseColor
**
** The basic vertex lighting calc
*/
void RB_CalcDiffuseColor( unsigned char *colors )
{
int i, j;
float *v, *normal;
float incoming;
trRefEntity_t *ent;
int ambientLightInt;
vec3_t ambientLight;
vec3_t lightDir;
vec3_t directedLight;
int numVertexes;
#if idppc_altivec
vector unsigned char vSel = (vector unsigned char)(0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff);
vector float ambientLightVec;
vector float directedLightVec;
vector float lightDirVec;
vector float normalVec0, normalVec1;
vector float incomingVec0, incomingVec1, incomingVec2;
vector float zero, jVec;
vector signed int jVecInt;
vector signed short jVecShort;
vector unsigned char jVecChar, normalPerm;
#endif
ent = backEnd.currentEntity;
ambientLightInt = ent->ambientLightInt;
#if idppc_altivec
// A lot of this could be simplified if we made sure
// entities light info was 16-byte aligned.
jVecChar = vec_lvsl(0, ent->ambientLight);
ambientLightVec = vec_ld(0, (vector float *)ent->ambientLight);
jVec = vec_ld(11, (vector float *)ent->ambientLight);
ambientLightVec = vec_perm(ambientLightVec,jVec,jVecChar);
jVecChar = vec_lvsl(0, ent->directedLight);
directedLightVec = vec_ld(0,(vector float *)ent->directedLight);
jVec = vec_ld(11,(vector float *)ent->directedLight);
directedLightVec = vec_perm(directedLightVec,jVec,jVecChar);
jVecChar = vec_lvsl(0, ent->lightDir);
lightDirVec = vec_ld(0,(vector float *)ent->lightDir);
jVec = vec_ld(11,(vector float *)ent->lightDir);
lightDirVec = vec_perm(lightDirVec,jVec,jVecChar);
zero = (vector float)vec_splat_s8(0);
VectorCopy( ent->lightDir, lightDir );
#else
VectorCopy( ent->ambientLight, ambientLight );
VectorCopy( ent->directedLight, directedLight );
VectorCopy( ent->lightDir, lightDir );
#endif
v = tess.xyz[0];
normal = tess.normal[0];
#if idppc_altivec
normalPerm = vec_lvsl(0,normal);
#endif
numVertexes = tess.numVertexes;
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) {
#if idppc_altivec
normalVec0 = vec_ld(0,(vector float *)normal);
normalVec1 = vec_ld(11,(vector float *)normal);
normalVec0 = vec_perm(normalVec0,normalVec1,normalPerm);
incomingVec0 = vec_madd(normalVec0, lightDirVec, zero);
incomingVec1 = vec_sld(incomingVec0,incomingVec0,4);
incomingVec2 = vec_add(incomingVec0,incomingVec1);
incomingVec1 = vec_sld(incomingVec1,incomingVec1,4);
incomingVec2 = vec_add(incomingVec2,incomingVec1);
incomingVec0 = vec_splat(incomingVec2,0);
incomingVec0 = vec_max(incomingVec0,zero);
normalPerm = vec_lvsl(12,normal);
jVec = vec_madd(incomingVec0, directedLightVec, ambientLightVec);
jVecInt = vec_cts(jVec,0); // RGBx
jVecShort = vec_pack(jVecInt,jVecInt); // RGBxRGBx
jVecChar = vec_packsu(jVecShort,jVecShort); // RGBxRGBxRGBxRGBx
jVecChar = vec_sel(jVecChar,vSel,vSel); // RGBARGBARGBARGBA replace alpha with 255
vec_ste((vector unsigned int)jVecChar,0,(unsigned int *)&colors[i*4]); // store color
#else
incoming = DotProduct (normal, lightDir);
if ( incoming <= 0 ) {
*(int *)&colors[i*4] = ambientLightInt;
continue;
}
j = myftol( ambientLight[0] + incoming * directedLight[0] );
if ( j > 255 ) {
j = 255;
}
colors[i*4+0] = j;
j = myftol( ambientLight[1] + incoming * directedLight[1] );
if ( j > 255 ) {
j = 255;
}
colors[i*4+1] = j;
j = myftol( ambientLight[2] + incoming * directedLight[2] );
if ( j > 255 ) {
j = 255;
}
colors[i*4+2] = j;
colors[i*4+3] = 255;
#endif
}
}