dolphin/Source/Core/Core/IOS/IOS.cpp
Minty-Meeo cc858c63b8 Configurable MEM1 and MEM2 sizes at runtime via Dolphin.ini
Changed several enums from Memmap.h to be static vars and implemented Get functions to query them. This seems to have boosted speed a bit in some titles? The new variables and some previously statically initialized items are now initialized via Memory::Init() and the new AddressSpace::Init(). s_ram_size_real and the new s_exram_size_real in particular are initialized from new OnionConfig values "MAIN_MEM1_SIZE" and "MAIN_MEM2_SIZE", only if "MAIN_RAM_OVERRIDE_ENABLE" is true.

GUI features have been added to Config > Advanced to adjust the new OnionConfig values.

A check has been added to State::doState to ensure savestates with memory configurations different from the current settings aren't loaded. The STATE_VERSION is now 115.

FIFO Files have been updated from version 4 to version 5, now including the MEM1 and MEM2 sizes from the time of DFF creation. FIFO Logs not using the new features (OnionConfig MAIN_RAM_OVERRIDE_ENABLE is false) are still backwards compatible. FIFO Logs that do use the new features have a MIN_LOADER_VERSION of 5. Thanks to the order of function calls, FIFO logs are able to automatically configure the new OnionConfig settings to match what is needed. This is a bit hacky, though, so I also threw in a failsafe for if the conditions that allow this to work ever go away.

I took the liberty of adding a log message to explain why the core fails to initialize if the MIN_LOADER_VERSION is too great.

Some IOS code has had the function "RAMOverrideForIOSMemoryValues" appended to it to recalculate IOS Memory Values from retail IOSes/apploaders to fit the extended memory sizes. Worry not, if MAIN_RAM_OVERRIDE_ENABLE is false, this function does absolutely nothing.

A hotfix in DolphinQt/MenuBar.cpp has been implemented for RAM Override.
2020-04-28 12:10:50 -05:00

854 lines
27 KiB
C++

// Copyright 2017 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "Core/IOS/IOS.h"
#include <algorithm>
#include <array>
#include <cinttypes>
#include <deque>
#include <map>
#include <memory>
#include <mutex>
#include <string>
#include <utility>
#include "Common/Assert.h"
#include "Common/ChunkFile.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Common/Timer.h"
#include "Core/Boot/DolReader.h"
#include "Core/Boot/ElfReader.h"
#include "Core/CommonTitles.h"
#include "Core/Config/MainSettings.h"
#include "Core/ConfigManager.h"
#include "Core/Core.h"
#include "Core/CoreTiming.h"
#include "Core/HW/Memmap.h"
#include "Core/HW/WII_IPC.h"
#include "Core/IOS/DI/DI.h"
#include "Core/IOS/Device.h"
#include "Core/IOS/DeviceStub.h"
#include "Core/IOS/DolphinDevice.h"
#include "Core/IOS/ES/ES.h"
#include "Core/IOS/FS/FileSystem.h"
#include "Core/IOS/FS/FileSystemProxy.h"
#include "Core/IOS/MIOS.h"
#include "Core/IOS/Network/IP/Top.h"
#include "Core/IOS/Network/KD/NetKDRequest.h"
#include "Core/IOS/Network/KD/NetKDTime.h"
#include "Core/IOS/Network/NCD/Manage.h"
#include "Core/IOS/Network/SSL.h"
#include "Core/IOS/Network/Socket.h"
#include "Core/IOS/Network/WD/Command.h"
#include "Core/IOS/SDIO/SDIOSlot0.h"
#include "Core/IOS/STM/STM.h"
#include "Core/IOS/USB/Bluetooth/BTEmu.h"
#include "Core/IOS/USB/Bluetooth/BTReal.h"
#include "Core/IOS/USB/OH0/OH0.h"
#include "Core/IOS/USB/OH0/OH0Device.h"
#include "Core/IOS/USB/USB_HID/HIDv4.h"
#include "Core/IOS/USB/USB_HID/HIDv5.h"
#include "Core/IOS/USB/USB_KBD.h"
#include "Core/IOS/USB/USB_VEN/VEN.h"
#include "Core/IOS/VersionInfo.h"
#include "Core/IOS/WFS/WFSI.h"
#include "Core/IOS/WFS/WFSSRV.h"
#include "Core/PowerPC/PowerPC.h"
#include "Core/WiiRoot.h"
namespace IOS::HLE
{
static std::unique_ptr<EmulationKernel> s_ios;
constexpr u64 ENQUEUE_REQUEST_FLAG = 0x100000000ULL;
constexpr u64 ENQUEUE_ACKNOWLEDGEMENT_FLAG = 0x200000000ULL;
static CoreTiming::EventType* s_event_enqueue;
static CoreTiming::EventType* s_event_sdio_notify;
constexpr u32 ADDR_MEM1_SIZE = 0x3100;
constexpr u32 ADDR_MEM1_SIM_SIZE = 0x3104;
constexpr u32 ADDR_MEM1_END = 0x3108;
constexpr u32 ADDR_MEM1_ARENA_BEGIN = 0x310c;
constexpr u32 ADDR_MEM1_ARENA_END = 0x3110;
constexpr u32 ADDR_PH1 = 0x3114;
constexpr u32 ADDR_MEM2_SIZE = 0x3118;
constexpr u32 ADDR_MEM2_SIM_SIZE = 0x311c;
constexpr u32 ADDR_MEM2_END = 0x3120;
constexpr u32 ADDR_MEM2_ARENA_BEGIN = 0x3124;
constexpr u32 ADDR_MEM2_ARENA_END = 0x3128;
constexpr u32 ADDR_PH2 = 0x312c;
constexpr u32 ADDR_IPC_BUFFER_BEGIN = 0x3130;
constexpr u32 ADDR_IPC_BUFFER_END = 0x3134;
constexpr u32 ADDR_HOLLYWOOD_REVISION = 0x3138;
constexpr u32 ADDR_PH3 = 0x313c;
constexpr u32 ADDR_IOS_VERSION = 0x3140;
constexpr u32 ADDR_IOS_DATE = 0x3144;
constexpr u32 ADDR_IOS_RESERVED_BEGIN = 0x3148;
constexpr u32 ADDR_IOS_RESERVED_END = 0x314c;
constexpr u32 ADDR_PH4 = 0x3150;
constexpr u32 ADDR_PH5 = 0x3154;
constexpr u32 ADDR_RAM_VENDOR = 0x3158;
constexpr u32 ADDR_BOOT_FLAG = 0x315c;
constexpr u32 ADDR_APPLOADER_FLAG = 0x315d;
constexpr u32 ADDR_DEVKIT_BOOT_PROGRAM_VERSION = 0x315e;
constexpr u32 ADDR_SYSMENU_SYNC = 0x3160;
constexpr u32 PLACEHOLDER = 0xDEADBEEF;
static bool SetupMemory(u64 ios_title_id, MemorySetupType setup_type)
{
auto target_imv = std::find_if(
GetMemoryValues().begin(), GetMemoryValues().end(),
[&](const MemoryValues& imv) { return imv.ios_number == (ios_title_id & 0xffff); });
if (target_imv == GetMemoryValues().end())
{
ERROR_LOG(IOS, "Unknown IOS version: %016" PRIx64, ios_title_id);
return false;
}
if (setup_type == MemorySetupType::IOSReload)
{
Memory::Write_U32(target_imv->ios_version, ADDR_IOS_VERSION);
// These values are written by the IOS kernel as part of its boot process (for IOS28 and newer).
//
// This works in a slightly different way on a real console: older IOS versions (< IOS28) all
// have the same range (933E0000 - 93400000), thus they don't write it at boot and just inherit
// all values. However, the range has changed since IOS28. To make things work properly
// after a reload, newer IOSes always write the legacy range before loading an IOS kernel;
// the new IOS either updates the range (>= IOS28) or inherits it (< IOS28).
//
// We can skip this convoluted process and just write the correct range directly.
Memory::Write_U32(target_imv->mem2_physical_size, ADDR_MEM2_SIZE);
Memory::Write_U32(target_imv->mem2_simulated_size, ADDR_MEM2_SIM_SIZE);
Memory::Write_U32(target_imv->mem2_end, ADDR_MEM2_END);
Memory::Write_U32(target_imv->mem2_arena_begin, ADDR_MEM2_ARENA_BEGIN);
Memory::Write_U32(target_imv->mem2_arena_end, ADDR_MEM2_ARENA_END);
Memory::Write_U32(target_imv->ipc_buffer_begin, ADDR_IPC_BUFFER_BEGIN);
Memory::Write_U32(target_imv->ipc_buffer_end, ADDR_IPC_BUFFER_END);
Memory::Write_U32(target_imv->ios_reserved_begin, ADDR_IOS_RESERVED_BEGIN);
Memory::Write_U32(target_imv->ios_reserved_end, ADDR_IOS_RESERVED_END);
RAMOverrideForIOSMemoryValues(setup_type);
return true;
}
Memory::Write_U32(target_imv->mem1_physical_size, ADDR_MEM1_SIZE);
Memory::Write_U32(target_imv->mem1_simulated_size, ADDR_MEM1_SIM_SIZE);
Memory::Write_U32(target_imv->mem1_end, ADDR_MEM1_END);
Memory::Write_U32(target_imv->mem1_arena_begin, ADDR_MEM1_ARENA_BEGIN);
Memory::Write_U32(target_imv->mem1_arena_end, ADDR_MEM1_ARENA_END);
Memory::Write_U32(PLACEHOLDER, ADDR_PH1);
Memory::Write_U32(target_imv->mem2_physical_size, ADDR_MEM2_SIZE);
Memory::Write_U32(target_imv->mem2_simulated_size, ADDR_MEM2_SIM_SIZE);
Memory::Write_U32(target_imv->mem2_end, ADDR_MEM2_END);
Memory::Write_U32(target_imv->mem2_arena_begin, ADDR_MEM2_ARENA_BEGIN);
Memory::Write_U32(target_imv->mem2_arena_end, ADDR_MEM2_ARENA_END);
Memory::Write_U32(PLACEHOLDER, ADDR_PH2);
Memory::Write_U32(target_imv->ipc_buffer_begin, ADDR_IPC_BUFFER_BEGIN);
Memory::Write_U32(target_imv->ipc_buffer_end, ADDR_IPC_BUFFER_END);
Memory::Write_U32(target_imv->hollywood_revision, ADDR_HOLLYWOOD_REVISION);
Memory::Write_U32(PLACEHOLDER, ADDR_PH3);
Memory::Write_U32(target_imv->ios_version, ADDR_IOS_VERSION);
Memory::Write_U32(target_imv->ios_date, ADDR_IOS_DATE);
Memory::Write_U32(target_imv->ios_reserved_begin, ADDR_IOS_RESERVED_BEGIN);
Memory::Write_U32(target_imv->ios_reserved_end, ADDR_IOS_RESERVED_END);
Memory::Write_U32(PLACEHOLDER, ADDR_PH4);
Memory::Write_U32(PLACEHOLDER, ADDR_PH5);
Memory::Write_U32(target_imv->ram_vendor, ADDR_RAM_VENDOR);
Memory::Write_U8(0xDE, ADDR_BOOT_FLAG);
Memory::Write_U8(0xAD, ADDR_APPLOADER_FLAG);
Memory::Write_U16(0xBEEF, ADDR_DEVKIT_BOOT_PROGRAM_VERSION);
Memory::Write_U32(target_imv->sysmenu_sync, ADDR_SYSMENU_SYNC);
RAMOverrideForIOSMemoryValues(setup_type);
return true;
}
void RAMOverrideForIOSMemoryValues(MemorySetupType setup_type)
{
// Don't touch anything if the feature isn't enabled.
if (!Config::Get(Config::MAIN_RAM_OVERRIDE_ENABLE))
return;
// Some unstated constants that can be inferred.
const u32 ipc_buffer_size =
Memory::Read_U32(ADDR_IPC_BUFFER_END) - Memory::Read_U32(ADDR_IPC_BUFFER_BEGIN);
const u32 ios_reserved_size =
Memory::Read_U32(ADDR_IOS_RESERVED_END) - Memory::Read_U32(ADDR_IOS_RESERVED_BEGIN);
const u32 mem1_physical_size = Memory::GetRamSizeReal();
const u32 mem1_simulated_size = Memory::GetRamSizeReal();
const u32 mem1_end = Memory::MEM1_BASE_ADDR + mem1_simulated_size;
const u32 mem1_arena_begin = 0;
const u32 mem1_arena_end = mem1_end;
const u32 mem2_physical_size = Memory::GetExRamSizeReal();
const u32 mem2_simulated_size = Memory::GetExRamSizeReal();
const u32 mem2_end = Memory::MEM2_BASE_ADDR + mem2_simulated_size - ios_reserved_size;
const u32 mem2_arena_begin = Memory::MEM2_BASE_ADDR + 0x800U;
const u32 mem2_arena_end = mem2_end - ipc_buffer_size;
const u32 ipc_buffer_begin = mem2_arena_end;
const u32 ipc_buffer_end = mem2_end;
const u32 ios_reserved_begin = mem2_end;
const u32 ios_reserved_end = Memory::MEM2_BASE_ADDR + mem2_simulated_size;
if (setup_type == MemorySetupType::Full)
{
// Overwriting these after the game's apploader sets them would be bad
Memory::Write_U32(mem1_physical_size, ADDR_MEM1_SIZE);
Memory::Write_U32(mem1_simulated_size, ADDR_MEM1_SIM_SIZE);
Memory::Write_U32(mem1_end, ADDR_MEM1_END);
Memory::Write_U32(mem1_arena_begin, ADDR_MEM1_ARENA_BEGIN);
Memory::Write_U32(mem1_arena_end, ADDR_MEM1_ARENA_END);
}
Memory::Write_U32(mem2_physical_size, ADDR_MEM2_SIZE);
Memory::Write_U32(mem2_simulated_size, ADDR_MEM2_SIM_SIZE);
Memory::Write_U32(mem2_end, ADDR_MEM2_END);
Memory::Write_U32(mem2_arena_begin, ADDR_MEM2_ARENA_BEGIN);
Memory::Write_U32(mem2_arena_end, ADDR_MEM2_ARENA_END);
Memory::Write_U32(ipc_buffer_begin, ADDR_IPC_BUFFER_BEGIN);
Memory::Write_U32(ipc_buffer_end, ADDR_IPC_BUFFER_END);
Memory::Write_U32(ios_reserved_begin, ADDR_IOS_RESERVED_BEGIN);
Memory::Write_U32(ios_reserved_end, ADDR_IOS_RESERVED_END);
}
void WriteReturnValue(s32 value, u32 address)
{
Memory::Write_U32(static_cast<u32>(value), address);
}
Kernel::Kernel()
{
// Until the Wii root and NAND path stuff is entirely managed by IOS and made non-static,
// using more than one IOS instance at a time is not supported.
ASSERT(GetIOS() == nullptr);
Core::InitializeWiiRoot(false);
m_is_responsible_for_nand_root = true;
AddCoreDevices();
}
Kernel::~Kernel()
{
{
std::lock_guard<std::mutex> lock(m_device_map_mutex);
m_device_map.clear();
}
if (m_is_responsible_for_nand_root)
Core::ShutdownWiiRoot();
}
Kernel::Kernel(u64 title_id) : m_title_id(title_id)
{
}
EmulationKernel::EmulationKernel(u64 title_id) : Kernel(title_id)
{
INFO_LOG(IOS, "Starting IOS %016" PRIx64, title_id);
if (!SetupMemory(title_id, MemorySetupType::IOSReload))
WARN_LOG(IOS, "No information about this IOS -- cannot set up memory values");
if (title_id == Titles::MIOS)
{
MIOS::Load();
return;
}
// IOS re-inits IPC and sends a dummy ack during its boot process.
EnqueueIPCAcknowledgement(0);
AddCoreDevices();
AddStaticDevices();
}
EmulationKernel::~EmulationKernel()
{
CoreTiming::RemoveAllEvents(s_event_enqueue);
}
// The title ID is a u64 where the first 32 bits are used for the title type.
// For IOS title IDs, the type will always be 00000001 (system), and the lower 32 bits
// are used for the IOS major version -- which is what we want here.
u32 Kernel::GetVersion() const
{
return static_cast<u32>(m_title_id);
}
std::shared_ptr<FS::FileSystem> Kernel::GetFS()
{
return m_fs;
}
std::shared_ptr<Device::ES> Kernel::GetES()
{
return std::static_pointer_cast<Device::ES>(m_device_map.at("/dev/es"));
}
// Since we don't have actual processes, we keep track of only the PPC's UID/GID.
// These functions roughly correspond to syscalls 0x2b, 0x2c, 0x2d, 0x2e (though only for the PPC).
void Kernel::SetUidForPPC(u32 uid)
{
m_ppc_uid = uid;
}
u32 Kernel::GetUidForPPC() const
{
return m_ppc_uid;
}
void Kernel::SetGidForPPC(u16 gid)
{
m_ppc_gid = gid;
}
u16 Kernel::GetGidForPPC() const
{
return m_ppc_gid;
}
static std::vector<u8> ReadBootContent(FS::FileSystem* fs, const std::string& path, size_t max_size)
{
const auto file = fs->OpenFile(0, 0, path, FS::Mode::Read);
if (!file)
return {};
const size_t file_size = file->GetStatus()->size;
if (max_size != 0 && file_size > max_size)
return {};
std::vector<u8> buffer(file_size);
if (!file->Read(buffer.data(), buffer.size()))
return {};
return buffer;
}
// This corresponds to syscall 0x41, which loads a binary from the NAND and bootstraps the PPC.
// Unlike 0x42, IOS will set up some constants in memory before booting the PPC.
bool Kernel::BootstrapPPC(const std::string& boot_content_path)
{
const DolReader dol{ReadBootContent(m_fs.get(), boot_content_path, 0)};
if (!dol.IsValid())
return false;
if (!SetupMemory(m_title_id, MemorySetupType::Full))
return false;
if (!dol.LoadIntoMemory())
return false;
// NAND titles start with address translation off at 0x3400 (via the PPC bootstub)
// The state of other CPU registers (like the BAT registers) doesn't matter much
// because the realmode code at 0x3400 initializes everything itself anyway.
MSR.Hex = 0;
PC = 0x3400;
return true;
}
struct ARMBinary final
{
explicit ARMBinary(std::vector<u8>&& bytes) : m_bytes(std::move(bytes)) {}
bool IsValid() const
{
// The header is at least 0x10.
if (m_bytes.size() < 0x10)
return false;
return m_bytes.size() >= (GetHeaderSize() + GetElfOffset() + GetElfSize());
}
std::vector<u8> GetElf() const
{
const auto iterator = m_bytes.cbegin() + GetHeaderSize() + GetElfOffset();
return std::vector<u8>(iterator, iterator + GetElfSize());
}
u32 GetHeaderSize() const { return Common::swap32(m_bytes.data()); }
u32 GetElfOffset() const { return Common::swap32(m_bytes.data() + 0x4); }
u32 GetElfSize() const { return Common::swap32(m_bytes.data() + 0x8); }
private:
std::vector<u8> m_bytes;
};
// Similar to syscall 0x42 (ios_boot); this is used to change the current active IOS.
// IOS writes the new version to 0x3140 before restarting, but it does *not* poke any
// of the other constants to the memory. Warning: this resets the kernel instance.
//
// Passing a boot content path is optional because we do not require IOSes
// to be installed at the moment. If one is passed, the boot binary must exist
// on the NAND, or the call will fail like on a Wii.
bool Kernel::BootIOS(const u64 ios_title_id, const std::string& boot_content_path)
{
if (!boot_content_path.empty())
{
// Load the ARM binary to memory (if possible).
// Because we do not actually emulate the Starlet, only load the sections that are in MEM1.
ARMBinary binary{ReadBootContent(m_fs.get(), boot_content_path, 0xB00000)};
if (!binary.IsValid())
return false;
ElfReader elf{binary.GetElf()};
if (!elf.LoadIntoMemory(true))
return false;
}
// Shut down the active IOS first before switching to the new one.
s_ios.reset();
s_ios = std::make_unique<EmulationKernel>(ios_title_id);
return true;
}
void Kernel::AddDevice(std::unique_ptr<Device::Device> device)
{
ASSERT(device->GetDeviceType() == Device::Device::DeviceType::Static);
m_device_map[device->GetDeviceName()] = std::move(device);
}
void Kernel::AddCoreDevices()
{
m_fs = FS::MakeFileSystem();
ASSERT(m_fs);
std::lock_guard<std::mutex> lock(m_device_map_mutex);
AddDevice(std::make_unique<Device::FS>(*this, "/dev/fs"));
AddDevice(std::make_unique<Device::ES>(*this, "/dev/es"));
AddDevice(std::make_unique<Device::DolphinDevice>(*this, "/dev/dolphin"));
}
void Kernel::AddStaticDevices()
{
std::lock_guard<std::mutex> lock(m_device_map_mutex);
const Feature features = GetFeatures(GetVersion());
// OH1 (Bluetooth)
AddDevice(std::make_unique<Device::Stub>(*this, "/dev/usb/oh1"));
if (!SConfig::GetInstance().m_bt_passthrough_enabled)
AddDevice(std::make_unique<Device::BluetoothEmu>(*this, "/dev/usb/oh1/57e/305"));
else
AddDevice(std::make_unique<Device::BluetoothReal>(*this, "/dev/usb/oh1/57e/305"));
// Other core modules
AddDevice(std::make_unique<Device::STMImmediate>(*this, "/dev/stm/immediate"));
AddDevice(std::make_unique<Device::STMEventHook>(*this, "/dev/stm/eventhook"));
AddDevice(std::make_unique<Device::DI>(*this, "/dev/di"));
AddDevice(std::make_unique<Device::SDIOSlot0>(*this, "/dev/sdio/slot0"));
AddDevice(std::make_unique<Device::Stub>(*this, "/dev/sdio/slot1"));
// Network modules
if (HasFeature(features, Feature::KD))
{
AddDevice(std::make_unique<Device::NetKDRequest>(*this, "/dev/net/kd/request"));
AddDevice(std::make_unique<Device::NetKDTime>(*this, "/dev/net/kd/time"));
}
if (HasFeature(features, Feature::NCD))
{
AddDevice(std::make_unique<Device::NetNCDManage>(*this, "/dev/net/ncd/manage"));
}
if (HasFeature(features, Feature::WiFi))
{
AddDevice(std::make_unique<Device::NetWDCommand>(*this, "/dev/net/wd/command"));
}
if (HasFeature(features, Feature::SO))
{
AddDevice(std::make_unique<Device::NetIPTop>(*this, "/dev/net/ip/top"));
}
if (HasFeature(features, Feature::SSL))
{
AddDevice(std::make_unique<Device::NetSSL>(*this, "/dev/net/ssl"));
}
// USB modules
// OH0 is unconditionally added because this device path is registered in all cases.
AddDevice(std::make_unique<Device::OH0>(*this, "/dev/usb/oh0"));
if (HasFeature(features, Feature::NewUSB))
{
AddDevice(std::make_unique<Device::USB_HIDv5>(*this, "/dev/usb/hid"));
AddDevice(std::make_unique<Device::USB_VEN>(*this, "/dev/usb/ven"));
// TODO(IOS): register /dev/usb/usb, /dev/usb/msc, /dev/usb/hub and /dev/usb/ehc
// as stubs that return IPC_EACCES.
}
else
{
if (HasFeature(features, Feature::USB_HIDv4))
AddDevice(std::make_unique<Device::USB_HIDv4>(*this, "/dev/usb/hid"));
if (HasFeature(features, Feature::USB_KBD))
AddDevice(std::make_unique<Device::USB_KBD>(*this, "/dev/usb/kbd"));
}
if (HasFeature(features, Feature::WFS))
{
AddDevice(std::make_unique<Device::WFSSRV>(*this, "/dev/usb/wfssrv"));
AddDevice(std::make_unique<Device::WFSI>(*this, "/dev/wfsi"));
}
}
s32 Kernel::GetFreeDeviceID()
{
for (u32 i = 0; i < IPC_MAX_FDS; i++)
{
if (m_fdmap[i] == nullptr)
{
return i;
}
}
return -1;
}
std::shared_ptr<Device::Device> Kernel::GetDeviceByName(const std::string& device_name)
{
std::lock_guard<std::mutex> lock(m_device_map_mutex);
const auto iterator = m_device_map.find(device_name);
return iterator != m_device_map.end() ? iterator->second : nullptr;
}
std::shared_ptr<Device::Device> EmulationKernel::GetDeviceByName(const std::string& device_name)
{
return Kernel::GetDeviceByName(device_name);
}
// Returns the FD for the newly opened device (on success) or an error code.
IPCCommandResult Kernel::OpenDevice(OpenRequest& request)
{
const s32 new_fd = GetFreeDeviceID();
INFO_LOG(IOS, "Opening %s (mode %d, fd %d)", request.path.c_str(), request.flags, new_fd);
if (new_fd < 0 || new_fd >= IPC_MAX_FDS)
{
ERROR_LOG(IOS, "Couldn't get a free fd, too many open files");
return IPCCommandResult{IPC_EMAX, true, 5000 * SystemTimers::TIMER_RATIO};
}
request.fd = new_fd;
std::shared_ptr<Device::Device> device;
if (request.path.find("/dev/usb/oh0/") == 0 && !GetDeviceByName(request.path) &&
!HasFeature(GetVersion(), Feature::NewUSB))
{
device = std::make_shared<Device::OH0Device>(*this, request.path);
}
else if (request.path.find("/dev/") == 0)
{
device = GetDeviceByName(request.path);
}
else if (request.path.find('/') == 0)
{
device = GetDeviceByName("/dev/fs");
}
if (!device)
{
ERROR_LOG(IOS, "Unknown device: %s", request.path.c_str());
return {IPC_ENOENT, true, 3700 * SystemTimers::TIMER_RATIO};
}
IPCCommandResult result = device->Open(request);
if (result.return_value >= IPC_SUCCESS)
{
m_fdmap[new_fd] = device;
result.return_value = new_fd;
}
return result;
}
IPCCommandResult Kernel::HandleIPCCommand(const Request& request)
{
if (request.command < IPC_CMD_OPEN || request.command > IPC_CMD_IOCTLV)
return IPCCommandResult{IPC_EINVAL, true, 978 * SystemTimers::TIMER_RATIO};
if (request.command == IPC_CMD_OPEN)
{
OpenRequest open_request{request.address};
return OpenDevice(open_request);
}
const auto device = (request.fd < IPC_MAX_FDS) ? m_fdmap[request.fd] : nullptr;
if (!device)
return IPCCommandResult{IPC_EINVAL, true, 550 * SystemTimers::TIMER_RATIO};
IPCCommandResult ret;
u64 wall_time_before = Common::Timer::GetTimeUs();
switch (request.command)
{
case IPC_CMD_CLOSE:
m_fdmap[request.fd].reset();
ret = device->Close(request.fd);
break;
case IPC_CMD_READ:
ret = device->Read(ReadWriteRequest{request.address});
break;
case IPC_CMD_WRITE:
ret = device->Write(ReadWriteRequest{request.address});
break;
case IPC_CMD_SEEK:
ret = device->Seek(SeekRequest{request.address});
break;
case IPC_CMD_IOCTL:
ret = device->IOCtl(IOCtlRequest{request.address});
break;
case IPC_CMD_IOCTLV:
ret = device->IOCtlV(IOCtlVRequest{request.address});
break;
default:
ASSERT_MSG(IOS, false, "Unexpected command: %x", request.command);
ret = IPCCommandResult{IPC_EINVAL, true, 978 * SystemTimers::TIMER_RATIO};
break;
}
u64 wall_time_after = Common::Timer::GetTimeUs();
constexpr u64 BLOCKING_IPC_COMMAND_THRESHOLD_US = 2000;
if (wall_time_after - wall_time_before > BLOCKING_IPC_COMMAND_THRESHOLD_US)
{
WARN_LOG(IOS, "Previous request to device %s blocked emulation for %" PRIu64 " microseconds.",
device->GetDeviceName().c_str(), wall_time_after - wall_time_before);
}
return ret;
}
void Kernel::ExecuteIPCCommand(const u32 address)
{
Request request{address};
IPCCommandResult result = HandleIPCCommand(request);
if (!result.send_reply)
return;
// Ensure replies happen in order
const s64 ticks_until_last_reply = m_last_reply_time - CoreTiming::GetTicks();
if (ticks_until_last_reply > 0)
result.reply_delay_ticks += ticks_until_last_reply;
m_last_reply_time = CoreTiming::GetTicks() + result.reply_delay_ticks;
EnqueueIPCReply(request, result.return_value, static_cast<int>(result.reply_delay_ticks));
}
// Happens AS SOON AS IPC gets a new pointer!
void Kernel::EnqueueIPCRequest(u32 address)
{
// Based on hardware tests, IOS takes between 5µs and 10µs to acknowledge an IPC request.
// Console 1: 456 TB ticks before ACK
// Console 2: 658 TB ticks before ACK
CoreTiming::ScheduleEvent(500 * SystemTimers::TIMER_RATIO, s_event_enqueue,
address | ENQUEUE_REQUEST_FLAG);
}
// Called to send a reply to an IOS syscall
void Kernel::EnqueueIPCReply(const Request& request, const s32 return_value, int cycles_in_future,
CoreTiming::FromThread from)
{
Memory::Write_U32(static_cast<u32>(return_value), request.address + 4);
// IOS writes back the command that was responded to in the FD field.
Memory::Write_U32(request.command, request.address + 8);
// IOS also overwrites the command type with the reply type.
Memory::Write_U32(IPC_REPLY, request.address);
CoreTiming::ScheduleEvent(cycles_in_future, s_event_enqueue, request.address, from);
}
void Kernel::EnqueueIPCAcknowledgement(u32 address, int cycles_in_future)
{
CoreTiming::ScheduleEvent(cycles_in_future, s_event_enqueue,
address | ENQUEUE_ACKNOWLEDGEMENT_FLAG);
}
void Kernel::HandleIPCEvent(u64 userdata)
{
if (userdata & ENQUEUE_ACKNOWLEDGEMENT_FLAG)
m_ack_queue.push_back(static_cast<u32>(userdata));
else if (userdata & ENQUEUE_REQUEST_FLAG)
m_request_queue.push_back(static_cast<u32>(userdata));
else
m_reply_queue.push_back(static_cast<u32>(userdata));
UpdateIPC();
}
void Kernel::UpdateIPC()
{
if (!IsReady())
return;
if (!m_request_queue.empty())
{
ClearX1();
GenerateAck(m_request_queue.front());
u32 command = m_request_queue.front();
m_request_queue.pop_front();
ExecuteIPCCommand(command);
return;
}
if (!m_reply_queue.empty())
{
GenerateReply(m_reply_queue.front());
DEBUG_LOG(IOS, "<<-- Reply to IPC Request @ 0x%08x", m_reply_queue.front());
m_reply_queue.pop_front();
return;
}
if (!m_ack_queue.empty())
{
GenerateAck(m_ack_queue.front());
WARN_LOG(IOS, "<<-- Double-ack to IPC Request @ 0x%08x", m_ack_queue.front());
m_ack_queue.pop_front();
return;
}
}
void Kernel::UpdateDevices()
{
// Check if a hardware device must be updated
for (const auto& entry : m_device_map)
{
if (entry.second->IsOpened())
{
entry.second->Update();
}
}
}
void Kernel::UpdateWantDeterminism(const bool new_want_determinism)
{
WiiSockMan::GetInstance().UpdateWantDeterminism(new_want_determinism);
for (const auto& device : m_device_map)
device.second->UpdateWantDeterminism(new_want_determinism);
}
void Kernel::SDIO_EventNotify()
{
// TODO: Potential race condition: If IsRunning() becomes false after
// it's checked, an event may be scheduled after CoreTiming shuts down.
if (SConfig::GetInstance().bWii && Core::IsRunning())
CoreTiming::ScheduleEvent(0, s_event_sdio_notify, 0, CoreTiming::FromThread::NON_CPU);
}
void Kernel::DoState(PointerWrap& p)
{
p.Do(m_request_queue);
p.Do(m_reply_queue);
p.Do(m_last_reply_time);
p.Do(m_title_id);
p.Do(m_ppc_uid);
p.Do(m_ppc_gid);
m_iosc.DoState(p);
m_fs->DoState(p);
if (m_title_id == Titles::MIOS)
return;
// We need to make sure all file handles are closed so IOS::HLE::Device::FS::DoState can
// successfully save or re-create /tmp
for (auto& descriptor : m_fdmap)
{
if (descriptor)
descriptor->PrepareForState(p.GetMode());
}
for (const auto& entry : m_device_map)
entry.second->DoState(p);
if (p.GetMode() == PointerWrap::MODE_READ)
{
for (u32 i = 0; i < IPC_MAX_FDS; i++)
{
u32 exists = 0;
p.Do(exists);
if (exists)
{
auto device_type = Device::Device::DeviceType::Static;
p.Do(device_type);
switch (device_type)
{
case Device::Device::DeviceType::Static:
{
std::string device_name;
p.Do(device_name);
m_fdmap[i] = GetDeviceByName(device_name);
break;
}
case Device::Device::DeviceType::OH0:
m_fdmap[i] = std::make_shared<Device::OH0Device>(*this, "");
m_fdmap[i]->DoState(p);
break;
}
}
}
}
else
{
for (auto& descriptor : m_fdmap)
{
u32 exists = descriptor ? 1 : 0;
p.Do(exists);
if (exists)
{
auto device_type = descriptor->GetDeviceType();
p.Do(device_type);
if (device_type == Device::Device::DeviceType::Static)
{
std::string device_name = descriptor->GetDeviceName();
p.Do(device_name);
}
else
{
descriptor->DoState(p);
}
}
}
}
}
IOSC& Kernel::GetIOSC()
{
return m_iosc;
}
void Init()
{
s_event_enqueue = CoreTiming::RegisterEvent("IPCEvent", [](u64 userdata, s64) {
if (s_ios)
s_ios->HandleIPCEvent(userdata);
});
s_event_sdio_notify = CoreTiming::RegisterEvent("SDIO_EventNotify", [](u64, s64) {
if (!s_ios)
return;
auto device = static_cast<Device::SDIOSlot0*>(s_ios->GetDeviceByName("/dev/sdio/slot0").get());
if (device)
device->EventNotify();
});
Device::DI::s_finish_executing_di_command =
CoreTiming::RegisterEvent("FinishDICommand", Device::DI::FinishDICommandCallback);
// Start with IOS80 to simulate part of the Wii boot process.
s_ios = std::make_unique<EmulationKernel>(Titles::SYSTEM_MENU_IOS);
// On a Wii, boot2 launches the system menu IOS, which then launches the system menu
// (which bootstraps the PPC). Bootstrapping the PPC results in memory values being set up.
// This means that the constants in the 0x3100 region are always set up by the time
// a game is launched. This is necessary because booting games from the game list skips
// a significant part of a Wii's boot process.
SetupMemory(Titles::SYSTEM_MENU_IOS, MemorySetupType::Full);
}
void Shutdown()
{
s_ios.reset();
}
EmulationKernel* GetIOS()
{
return s_ios.get();
}
} // namespace IOS::HLE