// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ // ----------------------------------------------------------------------------------------- // Partial Action Replay code system implementation. // Will never be able to support some AR codes - specifically those that patch the running // Action Replay engine itself - yes they do exist!!! // Action Replay actually is a small virtual machine with a limited number of commands. // It probably is Turing complete - but what does that matter when AR codes can write // actual PowerPC code... // ----------------------------------------------------------------------------------------- // ------------------------------------------------------------------------------------------------------------- // Code Types: // (Unconditonal) Normal Codes (0): this one has subtypes inside // (Conditional) Normal Codes (1 - 7): these just compare values and set the line skip info // Zero Codes: any code with no address. These codes are used to do special operations like memory copy, etc // ------------------------------------------------------------------------------------------------------------- #include #include #include "Common.h" #include "StringUtil.h" #include "HW/Memmap.h" #include "ActionReplay.h" #include "Core.h" #include "ARDecrypt.h" #include "LogManager.h" #include "ConfigManager.h" namespace ActionReplay { enum { // Zero Code Types ZCODE_END = 0x00, ZCODE_NORM = 0x02, ZCODE_ROW = 0x03, ZCODE_04 = 0x04, // Conditonal Codes CONDTIONAL_EQUAL = 0x01, CONDTIONAL_NOT_EQUAL = 0x02, CONDTIONAL_LESS_THAN_SIGNED = 0x03, CONDTIONAL_GREATER_THAN_SIGNED = 0x04, CONDTIONAL_LESS_THAN_UNSIGNED = 0x05, CONDTIONAL_GREATER_THAN_UNSIGNED = 0x06, CONDTIONAL_AND = 0x07, // bitwise AND // Conditional Line Counts CONDTIONAL_ONE_LINE = 0x00, CONDTIONAL_TWO_LINES = 0x01, CONDTIONAL_ALL_LINES_UNTIL = 0x02, CONDTIONAL_ALL_LINES = 0x03, // Data Types DATATYPE_8BIT = 0x00, DATATYPE_16BIT = 0x01, DATATYPE_32BIT = 0x02, DATATYPE_32BIT_FLOAT = 0x03, // Normal Code 0 Subtypes SUB_RAM_WRITE = 0x00, SUB_WRITE_POINTER = 0x01, SUB_ADD_CODE = 0x02, SUB_MASTER_CODE = 0x03, }; // pointer to the code currently being run, (used by log messages that include the code name) static ARCode const* current_code = NULL; static bool b_RanOnce = false; static std::vector arCodes; static std::vector activeCodes; static bool logSelf = false; static std::vector arLog; struct ARAddr { union { u32 address; struct { u32 gcaddr : 25; u32 size : 2; u32 type : 3; u32 subtype : 2; }; }; ARAddr(const u32 addr) : address(addr) {} u32 GCAddress() const { return gcaddr | 0x80000000; } operator u32() const { return address; } }; void LogInfo(const char *format, ...); bool Subtype_RamWriteAndFill(const ARAddr addr, const u32 data); bool Subtype_WriteToPointer(const ARAddr addr, const u32 data); bool Subtype_AddCode(const ARAddr addr, const u32 data); bool Subtype_MasterCodeAndWriteToCCXXXXXX(const ARAddr addr, const u32 data); bool ZeroCode_FillAndSlide(const u32 val_last, const ARAddr addr, const u32 data); bool ZeroCode_MemoryCopy(const u32 val_last, const ARAddr addr, const u32 data); bool NormalCode(const ARAddr addr, const u32 data); bool ConditionalCode(const ARAddr addr, const u32 data, int* const pSkipCount); bool CompareValues(const u32 val1, const u32 val2, const int type); // ---------------------- // AR Remote Functions void LoadCodes(IniFile &ini, bool forceLoad) { // Parses the Action Replay section of a game ini file. if (!SConfig::GetInstance().m_LocalCoreStartupParameter.bEnableCheats && !forceLoad) return; std::vector lines; std::vector encryptedLines; ARCode currentCode; arCodes.clear(); if (!ini.GetLines("ActionReplay", lines)) return; // no codes found. std::vector::const_iterator it = lines.begin(), lines_end = lines.end(); for (; it != lines_end; ++it) { const std::string line = *it; if (line.empty()) continue; std::vector pieces; // Check if the line is a name of the code if (line[0] == '+' || line[0] == '$') { if (currentCode.ops.size()) { arCodes.push_back(currentCode); currentCode.ops.clear(); } if (encryptedLines.size()) { DecryptARCode(encryptedLines, currentCode.ops); arCodes.push_back(currentCode); currentCode.ops.clear(); encryptedLines.clear(); } if (line.size() > 1) { if (line[0] == '+') { currentCode.active = true; currentCode.name = line.substr(2, line.size() - 2);; if (!forceLoad) Core::DisplayMessage("AR code active: " + currentCode.name, 5000); } else { currentCode.active = false; currentCode.name = line.substr(1, line.size() - 1); } } continue; } SplitString(line, ' ', pieces); // Check if the AR code is decrypted if (pieces.size() == 2 && pieces[0].size() == 8 && pieces[1].size() == 8) { AREntry op; bool success_addr = TryParse(std::string("0x") + pieces[0], &op.cmd_addr); bool success_val = TryParse(std::string("0x") + pieces[1], &op.value); if (!(success_addr | success_val)) { PanicAlertT("Action Replay Error: invalid AR code line: %s", line.c_str()); if (!success_addr) PanicAlertT("The address is invalid"); if (!success_val) PanicAlertT("The value is invalid"); } else currentCode.ops.push_back(op); } else { SplitString(line, '-', pieces); if (pieces.size() == 3 && pieces[0].size() == 4 && pieces[1].size() == 4 && pieces[2].size() == 5) { // Encrypted AR code // Decryption is done in "blocks", so we must push blocks into a vector, // then send to decrypt when a new block is encountered, or if it's the last block. encryptedLines.push_back(pieces[0]+pieces[1]+pieces[2]); } } } // Handle the last code correctly. if (currentCode.ops.size()) { arCodes.push_back(currentCode); } if (encryptedLines.size()) { DecryptARCode(encryptedLines, currentCode.ops); arCodes.push_back(currentCode); } UpdateActiveList(); } void LoadCodes(std::vector &_arCodes, IniFile &ini) { LoadCodes(ini, true); _arCodes = arCodes; } void LogInfo(const char *format, ...) { if (!b_RanOnce) { if (LogManager::GetMaxLevel() >= LogTypes::LINFO || logSelf) { char* temp = (char*)alloca(strlen(format)+512); va_list args; va_start(args, format); CharArrayFromFormatV(temp, 512, format, args); va_end(args); INFO_LOG(ACTIONREPLAY, "%s", temp); if (logSelf) { std::string text = temp; text += '\n'; arLog.push_back(text.c_str()); } } } } void RunAllActive() { if (SConfig::GetInstance().m_LocalCoreStartupParameter.bEnableCheats) { for (std::vector::iterator i = activeCodes.begin(); i != activeCodes.end(); ++i) { if (i->active) { i->active = RunCode(*i); LogInfo("\n"); } } b_RanOnce = true; } } bool RunCode(const ARCode &arcode) { // The mechanism is different than what the real AR uses, so there may be compatibility problems. bool doFillNSlide = false; bool doMemoryCopy = false; // used for conditional codes int skip_count = 0; u32 addr_last = 0; u32 val_last = 0; current_code = &arcode; LogInfo("Code Name: %s", arcode.name.c_str()); LogInfo("Number of codes: %i", arcode.ops.size()); std::vector::const_iterator iter = arcode.ops.begin(), ops_end = arcode.ops.end(); for (; iter != ops_end; ++iter) { const ARAddr& addr = *(ARAddr*)&iter->cmd_addr; const u32 data = iter->value; // after a conditional code, skip lines if needed if (skip_count) { if (skip_count > 0) // skip x lines { LogInfo("Line skipped"); --skip_count; } else if (-CONDTIONAL_ALL_LINES == skip_count) { // skip all lines LogInfo("All Lines skipped"); return true; // don't need to iterate through the rest of the ops } else if (-CONDTIONAL_ALL_LINES_UNTIL == skip_count) { // skip until a "00000000 40000000" line is reached LogInfo("Line skipped"); if (0 == addr && 0x40000000 == data) // check for an endif line skip_count = 0; } continue; } LogInfo("--- Running Code: %08x %08x ---", addr.address, data); //LogInfo("Command: %08x", cmd); // Do Fill & Slide if (doFillNSlide) { doFillNSlide = false; LogInfo("Doing Fill And Slide"); if (false == ZeroCode_FillAndSlide(val_last, addr, data)) return false; continue; } // Memory Copy if (doMemoryCopy) { doMemoryCopy = false; LogInfo("Doing Memory Copy"); if (false == ZeroCode_MemoryCopy(val_last, addr, data)) return false; continue; } // ActionReplay program self modification codes if (addr >= 0x00002000 && addr < 0x00003000) { LogInfo("This action replay simulator does not support codes that modify Action Replay itself."); PanicAlertT("This action replay simulator does not support codes that modify Action Replay itself."); return false; } // skip these weird init lines // TODO: Where are the "weird init lines"? //if (iter == code.ops.begin() && cmd == 1) //continue; // Zero codes if (0x0 == addr) // Check if the code is a zero code { const u8 zcode = (data >> 29); LogInfo("Doing Zero Code %08x", zcode); switch (zcode) { case ZCODE_END: // END OF CODES LogInfo("ZCode: End Of Codes"); return true; break; // TODO: the "00000000 40000000"(end if) codes fall into this case, I don't think that is correct case ZCODE_NORM: // Normal execution of codes // Todo: Set register 1BB4 to 0 LogInfo("ZCode: Normal execution of codes, set register 1BB4 to 0 (zcode not supported)"); break; case ZCODE_ROW: // Executes all codes in the same row // Todo: Set register 1BB4 to 1 LogInfo("ZCode: Executes all codes in the same row, Set register 1BB4 to 1 (zcode not supported)"); PanicAlertT("Zero 3 code not supported"); return false; break; case ZCODE_04: // Fill & Slide or Memory Copy if (0x3 == ((data >> 25) & 0x03)) { LogInfo("ZCode: Memory Copy"); doMemoryCopy = true; addr_last = addr; val_last = data; } else { LogInfo("ZCode: Fill And Slide"); doFillNSlide = true; val_last = data; } break; default: LogInfo("ZCode: Unknown"); PanicAlertT("Zero code unknown to dolphin: %08x", zcode); return false; break; } // done handling zero codes continue; } // Normal codes LogInfo("Doing Normal Code %08x", addr.type); LogInfo("Subtype: %08x", addr.subtype); switch (addr.type) { case 0x00: if (false == NormalCode(addr, data)) return false; break; default: LogInfo("This Normal Code is a Conditional Code"); if (false == ConditionalCode(addr, data, &skip_count)) return false; break; } } b_RanOnce = true; return true; } size_t GetCodeListSize() { return arCodes.size(); } ARCode GetARCode(size_t index) { if (index > arCodes.size()) { PanicAlertT("GetARCode: Index is greater than " "ar code list size %lu", (unsigned long)index); return ARCode(); } return arCodes[index]; } void SetARCode_IsActive(bool active, size_t index) { if (index > arCodes.size()) { PanicAlertT("SetARCode_IsActive: Index is greater than " "ar code list size %lu", (unsigned long)index); return; } arCodes[index].active = active; UpdateActiveList(); } void UpdateActiveList() { bool old_value = SConfig::GetInstance().m_LocalCoreStartupParameter.bEnableCheats; SConfig::GetInstance().m_LocalCoreStartupParameter.bEnableCheats = false; b_RanOnce = false; activeCodes.clear(); for (size_t i = 0; i < arCodes.size(); i++) { if (arCodes[i].active) activeCodes.push_back(arCodes[i]); } SConfig::GetInstance().m_LocalCoreStartupParameter.bEnableCheats = old_value; } void EnableSelfLogging(bool enable) { logSelf = enable; } const std::vector &GetSelfLog() { return arLog; } bool IsSelfLogging() { return logSelf; } // ---------------------- // Code Functions bool Subtype_RamWriteAndFill(const ARAddr addr, const u32 data) { const u32 new_addr = addr.GCAddress(); LogInfo("Hardware Address: %08x", new_addr); LogInfo("Size: %08x", addr.size); switch (addr.size) { case DATATYPE_8BIT: { LogInfo("8-bit Write"); LogInfo("--------"); u32 repeat = data >> 8; for (u32 i = 0; i <= repeat; ++i) { Memory::Write_U8(data & 0xFF, new_addr + i); LogInfo("Wrote %08x to address %08x", data & 0xFF, new_addr + i); } LogInfo("--------"); break; } case DATATYPE_16BIT: { LogInfo("16-bit Write"); LogInfo("--------"); u32 repeat = data >> 16; for (u32 i = 0; i <= repeat; ++i) { Memory::Write_U16(data & 0xFFFF, new_addr + i * 2); LogInfo("Wrote %08x to address %08x", data & 0xFFFF, new_addr + i * 2); } LogInfo("--------"); break; } case DATATYPE_32BIT_FLOAT: case DATATYPE_32BIT: // Dword write LogInfo("32bit Write"); LogInfo("--------"); Memory::Write_U32(data, new_addr); LogInfo("Wrote %08x to address %08x", data, new_addr); LogInfo("--------"); break; default: LogInfo("Bad Size"); PanicAlertT("Action Replay Error: Invalid size " "(%08x : address = %08x) in Ram Write And Fill (%s)", addr.size, addr.gcaddr, current_code->name.c_str()); return false; } return true; } bool Subtype_WriteToPointer(const ARAddr addr, const u32 data) { const u32 new_addr = addr.GCAddress(); const u32 ptr = Memory::Read_U32(new_addr); LogInfo("Hardware Address: %08x", new_addr); LogInfo("Size: %08x", addr.size); switch (addr.size) { case DATATYPE_8BIT: { LogInfo("Write 8-bit to pointer"); LogInfo("--------"); const u8 thebyte = data & 0xFF; const u32 offset = data >> 8; LogInfo("Pointer: %08x", ptr); LogInfo("Byte: %08x", thebyte); LogInfo("Offset: %08x", offset); Memory::Write_U8(thebyte, ptr + offset); LogInfo("Wrote %08x to address %08x", thebyte, ptr + offset); LogInfo("--------"); break; } case DATATYPE_16BIT: { LogInfo("Write 16-bit to pointer"); LogInfo("--------"); const u16 theshort = data & 0xFFFF; const u32 offset = (data >> 16) << 1; LogInfo("Pointer: %08x", ptr); LogInfo("Byte: %08x", theshort); LogInfo("Offset: %08x", offset); Memory::Write_U16(theshort, ptr + offset); LogInfo("Wrote %08x to address %08x", theshort, ptr + offset); LogInfo("--------"); break; } case DATATYPE_32BIT_FLOAT: case DATATYPE_32BIT: LogInfo("Write 32-bit to pointer"); LogInfo("--------"); Memory::Write_U32(data, ptr); LogInfo("Wrote %08x to address %08x", data, ptr); LogInfo("--------"); break; default: LogInfo("Bad Size"); PanicAlertT("Action Replay Error: Invalid size " "(%08x : address = %08x) in Write To Pointer (%s)", addr.size, addr.gcaddr, current_code->name.c_str()); return false; } return true; } bool Subtype_AddCode(const ARAddr addr, const u32 data) { // Used to increment/decrement a value in memory const u32 new_addr = addr.GCAddress(); LogInfo("Hardware Address: %08x", new_addr); LogInfo("Size: %08x", addr.size); switch (addr.size) { case DATATYPE_8BIT: LogInfo("8-bit Add"); LogInfo("--------"); Memory::Write_U8(Memory::Read_U8(new_addr) + data, new_addr); LogInfo("Wrote %08x to address %08x", Memory::Read_U8(new_addr) + (data & 0xFF), new_addr); LogInfo("--------"); break; case DATATYPE_16BIT: LogInfo("16-bit Add"); LogInfo("--------"); Memory::Write_U16(Memory::Read_U16(new_addr) + data, new_addr); LogInfo("Wrote %08x to address %08x", Memory::Read_U16(new_addr) + (data & 0xFFFF), new_addr); LogInfo("--------"); break; case DATATYPE_32BIT: LogInfo("32-bit Add"); LogInfo("--------"); Memory::Write_U32(Memory::Read_U32(new_addr) + data, new_addr); LogInfo("Wrote %08x to address %08x", Memory::Read_U32(new_addr) + data, new_addr); LogInfo("--------"); break; case DATATYPE_32BIT_FLOAT: { LogInfo("32-bit floating Add"); LogInfo("--------"); const u32 read = Memory::Read_U32(new_addr); const float fread = *((float*)&read) + (float)data; // data contains an integer value const u32 newval = *((u32*)&fread); Memory::Write_U32(newval, new_addr); LogInfo("Old Value %08x", read); LogInfo("Increment %08x", data); LogInfo("New value %08x", newval); LogInfo("--------"); break; } default: LogInfo("Bad Size"); PanicAlertT("Action Replay Error: Invalid size " "(%08x : address = %08x) in Add Code (%s)", addr.size, addr.gcaddr, current_code->name.c_str()); return false; } return true; } bool Subtype_MasterCodeAndWriteToCCXXXXXX(const ARAddr addr, const u32 data) { // code not yet implemented - TODO // u32 new_addr = (addr & 0x01FFFFFF) | 0x80000000; // u8 mcode_type = (data & 0xFF0000) >> 16; // u8 mcode_count = (data & 0xFF00) >> 8; // u8 mcode_number = data & 0xFF; PanicAlertT("Action Replay Error: Master Code and Write To CCXXXXXX not implemented (%s)", current_code->name.c_str()); return false; } bool ZeroCode_FillAndSlide(const u32 val_last, const ARAddr addr, const u32 data) // This needs more testing { const u32 new_addr = ((ARAddr*)&val_last)->GCAddress(); const u8 size = ((ARAddr*)&val_last)->size; const s16 addr_incr = (s16)(data & 0xFFFF); const s8 val_incr = (s8)(data >> 24); const u8 write_num = (data & 0xFF0000) >> 16; u32 val = addr; u32 curr_addr = new_addr; LogInfo("Current Hardware Address: %08x", new_addr); LogInfo("Size: %08x", addr.size); LogInfo("Write Num: %08x", write_num); LogInfo("Address Increment: %i", addr_incr); LogInfo("Value Increment: %i", val_incr); switch (size) { case DATATYPE_8BIT: LogInfo("8-bit Write"); LogInfo("--------"); for (int i = 0; i < write_num; ++i) { Memory::Write_U8(val & 0xFF, curr_addr); curr_addr += addr_incr; val += val_incr; LogInfo("Write %08x to address %08x", val & 0xFF, curr_addr); LogInfo("Value Update: %08x", val); LogInfo("Current Hardware Address Update: %08x", curr_addr); } LogInfo("--------"); break; case DATATYPE_16BIT: LogInfo("16-bit Write"); LogInfo("--------"); for (int i=0; i < write_num; ++i) { Memory::Write_U16(val & 0xFFFF, curr_addr); LogInfo("Write %08x to address %08x", val & 0xFFFF, curr_addr); curr_addr += addr_incr * 2; val += val_incr; LogInfo("Value Update: %08x", val); LogInfo("Current Hardware Address Update: %08x", curr_addr); } LogInfo("--------"); break; case DATATYPE_32BIT: LogInfo("32-bit Write"); LogInfo("--------"); for (int i = 0; i < write_num; ++i) { Memory::Write_U32(val, curr_addr); LogInfo("Write %08x to address %08x", val, curr_addr); curr_addr += addr_incr * 4; val += val_incr; LogInfo("Value Update: %08x", val); LogInfo("Current Hardware Address Update: %08x", curr_addr); } LogInfo("--------"); break; default: LogInfo("Bad Size"); PanicAlertT("Action Replay Error: Invalid size (%08x : address = %08x) in Fill and Slide (%s)", size, new_addr, current_code->name.c_str()); return false; } return true; } // Looks like this is new?? - untested bool ZeroCode_MemoryCopy(const u32 val_last, const ARAddr addr, const u32 data) { const u32 addr_dest = val_last | 0x06000000; const u32 addr_src = addr.GCAddress(); const u8 num_bytes = data & 0x7FFF; LogInfo("Dest Address: %08x", addr_dest); LogInfo("Src Address: %08x", addr_src); LogInfo("Size: %08x", num_bytes); if ((data & ~0x7FFF) == 0x0000) { if ((data >> 24) != 0x0) { // Memory Copy With Pointers Support LogInfo("Memory Copy With Pointers Support"); LogInfo("--------"); for (int i = 0; i < 138; ++i) { Memory::Write_U8(Memory::Read_U8(addr_src + i), addr_dest + i); LogInfo("Wrote %08x to address %08x", Memory::Read_U8(addr_src + i), addr_dest + i); } LogInfo("--------"); } else { // Memory Copy Without Pointer Support LogInfo("Memory Copy Without Pointers Support"); LogInfo("--------"); for (int i=0; i < num_bytes; ++i) { Memory::Write_U32(Memory::Read_U32(addr_src + i), addr_dest + i); LogInfo("Wrote %08x to address %08x", Memory::Read_U32(addr_src + i), addr_dest + i); } LogInfo("--------"); return true; } } else { LogInfo("Bad Value"); PanicAlertT("Action Replay Error: Invalid value (%08x) in Memory Copy (%s)", (data & ~0x7FFF), current_code->name.c_str()); return false; } return true; } bool NormalCode(const ARAddr addr, const u32 data) { switch (addr.subtype) { case SUB_RAM_WRITE: // Ram write (and fill) LogInfo("Doing Ram Write And Fill"); if (!Subtype_RamWriteAndFill(addr, data)) return false; break; case SUB_WRITE_POINTER: // Write to pointer LogInfo("Doing Write To Pointer"); if (!Subtype_WriteToPointer(addr, data)) return false; break; case SUB_ADD_CODE: // Increment Value LogInfo("Doing Add Code"); if (!Subtype_AddCode(addr, data)) return false; break; case SUB_MASTER_CODE: // Master Code & Write to CCXXXXXX LogInfo("Doing Master Code And Write to CCXXXXXX (ncode not supported)"); if (!Subtype_MasterCodeAndWriteToCCXXXXXX(addr, data)) return false; break; default: LogInfo("Bad Subtype"); PanicAlertT("Action Replay: Normal Code 0: Invalid Subtype %08x (%s)", addr.subtype, current_code->name.c_str()); return false; break; } return true; } bool ConditionalCode(const ARAddr addr, const u32 data, int* const pSkipCount) { const u32 new_addr = addr.GCAddress(); LogInfo("Size: %08x", addr.size); LogInfo("Hardware Address: %08x", new_addr); bool result = true; switch (addr.size) { case DATATYPE_8BIT: result = CompareValues((u32)Memory::Read_U8(new_addr), (data & 0xFF), addr.type); break; case DATATYPE_16BIT: result = CompareValues((u32)Memory::Read_U16(new_addr), (data & 0xFFFF), addr.type); break; case DATATYPE_32BIT_FLOAT: case DATATYPE_32BIT: result = CompareValues(Memory::Read_U32(new_addr), data, addr.type); break; default: LogInfo("Bad Size"); PanicAlertT("Action Replay: Conditional Code: Invalid Size %08x (%s)", addr.size, current_code->name.c_str()); return false; break; } // if the comparison failed we need to skip some lines if (false == result) { switch (addr.subtype) { case CONDTIONAL_ONE_LINE: case CONDTIONAL_TWO_LINES: *pSkipCount = addr.subtype + 1; // Skip 1 or 2 lines break; // Skip all lines, // Skip lines until a "00000000 40000000" line is reached case CONDTIONAL_ALL_LINES: case CONDTIONAL_ALL_LINES_UNTIL: *pSkipCount = -addr.subtype; break; default: LogInfo("Bad Subtype"); PanicAlertT("Action Replay: Normal Code %i: Invalid subtype %08x (%s)", 1, addr.subtype, current_code->name.c_str()); return false; break; } } return true; } bool CompareValues(const u32 val1, const u32 val2, const int type) { switch(type) { case CONDTIONAL_EQUAL: LogInfo("Type 1: If Equal"); return (val1 == val2); break; case CONDTIONAL_NOT_EQUAL: LogInfo("Type 2: If Not Equal"); return (val1 != val2); break; case CONDTIONAL_LESS_THAN_SIGNED: LogInfo("Type 3: If Less Than (Signed)"); return ((int)val1 < (int)val2); break; case CONDTIONAL_GREATER_THAN_SIGNED: LogInfo("Type 4: If Greater Than (Signed)"); return ((int)val1 > (int)val2); break; case CONDTIONAL_LESS_THAN_UNSIGNED: LogInfo("Type 5: If Less Than (Unsigned)"); return (val1 < val2); break; case CONDTIONAL_GREATER_THAN_UNSIGNED: LogInfo("Type 6: If Greater Than (Unsigned)"); return (val1 > val2); break; case CONDTIONAL_AND: LogInfo("Type 7: If And"); return !!(val1 & val2); // bitwise AND break; default: LogInfo("Unknown Compare type"); PanicAlertT("Action Replay: Invalid Normal Code Type %08x (%s)", type, current_code->name.c_str()); return false; break; } } } // namespace ActionReplay