This fixes a problem I was having where using frame advance with the
debugger open would frequently cause panic alerts about invalid addresses
due to the CPU thread changing MSR.DR while the host thread was trying
to access memory.
To aid in tracking down all the places where we weren't properly locking
the CPU, I've created a new type (in Core.h) that you have to pass as a
reference or pointer to functions that require running as the CPU thread.
The fix in ef77872 worked for panic alerts from
the CPU thread, but there were still problems with
panic alerts from the GPU thread in dual core mode.
This change attempts to fix those.
SPDX standardizes how source code conveys its copyright and licensing
information. See https://spdx.github.io/spdx-spec/1-rationale/ . SPDX
tags are adopted in many large projects, including things like the Linux
kernel.
-Add pause state to FPSCounter.
-Add ability to have more than one "OnStateChanged" callback in core.
-Add GetActualEmulationSpeed() to Core. Returns 1 by default. It's used by my input PRs.
Time for yet another new iteration of working around the
"surface destruction during boot" problem...
This time, the strategy is to use a mutex in MainAndroid.cpp.
This is now unused. Seems like it was an improper fix
(there would be a race if saving the screenshot took longer
than 2 seconds) back when it was used too.
The workaround was added in 0446a58.
The underlying problem is that we must not destroy the surface
while the video backend is initializing, otherwise the video
backend may reference nullptr.
I've also cleaned up the logic for when to destroy the surface.
Note that the comment in EmulationFragment.java about only being
able to destroy the surface when emulation is running is not true
anymore (due to de632fc, it seems like).
Allows callers to std::move strings into the functions (or automatically
assume the move constructor/move assignment operator for rvalue
references, potentially avoiding copies altogether.
Continues the migration over to using fmt. Given fmt is also compatible
with std::string and std::string_view, we can convert some parameters
over to std::string_view, such as the message parameter for
StopMessage() and the name parameter for an overload of SaveScreenShot()
Given this is actually a part of the Host interface, this should be
placed with it.
While we're at it, turn it into an enum class so that we don't dump its
contained values into the surrounding scope. We can also make
Host_Message take the enum type itself directly instead of taking a
general int value.
After this, it'll be trivial to divide out the rest of Common.h and
remove the header from the repository entirely
Core::PauseAndLock requires all calls to it to be balanced, like this:
const bool was_unpaused = Core::PauseAndLock(true);
// do stuff on the CPU thread
Core::PauseAndLock(false, was_unpaused);
Aside from being a bit cumbersome, it turns out all callers really
don't need to know about was_unpaused at all. They just need to do
something on the CPU thread safely, including locking/unlocking.
So this commit replaces Core::PauseAndLock with a function that
makes both the purpose and the scope of what is being run on the
CPU thread visually clear. This makes it harder to accidentally run
something on the wrong thread, or forget the second call to
PauseAndLock to unpause, or forget that it needs to be passed
was_unpaused at the end.
We also don't need comments to indicate code X is being run on the
CPU thread anymore, as the function name makes it obvious.
* Move out boot parameters to a separate struct, which is not part
of SConfig/ConfigManager because there is no reason for it to
be there.
* Move out file name parsing and constructing the appropriate params
from paths to a separate function that does that, and only that.
* For every different boot type we support, add a proper struct with
only the required parameters, with descriptive names and use
std::variant to only store what we need.
* Clean up the bHLE_BS2 stuff which made no sense sometimes. Now
instead of using bHLE_BS2 for two different things, both for storing
the user config setting and as a runtime boot parameter,
we simply replace the Disc boot params with BootParameters::IPL.
* Const correctness so it's clear what can or cannot update the config.
* Drop unused parameters and unneeded checks.
* Make a few checks a lot more concise. (Looking at you, extension
checks for disc images.)
* Remove a mildly terrible workaround where we needed to pass an empty
string in order to boot the GC IPL without any game inserted.
(Not required anymore thanks to std::variant and std::optional.)
The motivation for this are multiple: cleaning up and being able to add
support for booting an installed NAND title. Without this change, it'd
be pretty much impossible to implement that.
Also, using std::visit with std::variant makes the compiler do
additional type checks: now we're guaranteed that the boot code will
handle all boot types and no invalid boot type will be possible.
Some widescreen hacks (see below) properly force anamorphic output, but
don't make the last projection in a frame 16:9, so Dolphin doesn't
display it correctly.
This changes the heuristic code to assume a frame is anamorphic based on
the total number of vertex flushes in 4:3 and 16:9 projections that
frame. It also adds a bit of "aspect ratio inertia" by making it harder
to switch aspect ratios, which takes care of aspect ratio flickering
that some games / widescreen hacks would be susceptible with the new
logic.
I've tested this on SSX Tricky's native anamorphic support, Tom Clancy's
Splinter Cell (it stayed in 4:3 the whole time), and on the following
widescreen hacks for which the heuristic doesn't currently work:
Paper Mario: The Thousand-Year Door (Gecko widescreen code from Nintendont)
C202F310 00000003
3DC08042 3DE03FD8
91EEF6D8 4E800020
60000000 00000000
04199598 4E800020
C200F500 00000004
3DE08082 3DC0402B
61CE12A2 91CFA1BC
60000000 387D015C
60000000 00000000
C200F508 00000004
3DE08082 3DC04063
61CEE8D3 91CFA1BC
60000000 7FC3F378
60000000 00000000
The Simpsons: Hit & Run (AR widescreen code from the wiki)
04004600 C002A604
04004604 C09F0014
04004608 FC002040
0400460C 4082000C
04004610 C002A608
04004614 EC630032
04004618 48220508
04041A5C 38600001
04224344 C002A60C
04224B1C 4BDDFAE4
044786B0 3FAAAAAB
04479F28 3FA33333
This is only ever queried and not set outside of the Core.cpp, so this
should just be hidden internally and just have a function exposed that
allows querying it.
EndPlayInput runs on the CPU thread so it can't directly call
UpdateWantDeterminism. PlayController also tries to ChangeDisc
from the CPU Thread which is also invalid. It now just pauses
execution and posts a request to the Host to fix it instead.
The Core itself also did dodgy things like PauseAndLock-ing
from the CPU Thread and SetState from EmuThread which have been
removed.
Fix Frame Advance and FifoPlayer pause/unpause/stop.
CPU::EnableStepping is not atomic but is called from multiple threads
which races and leaves the system in a random state; also instruction
stepping was unstable, m_StepEvent had an almost random value because
of the dual purpose it served which could cause races where CPU::Run
would SingleStep when it was supposed to be sleeping.
FifoPlayer never FinishStateMove()d which was causing it to deadlock.
Rather than partially reimplementing CPU::Run, just use CPUCoreBase
and then call CPU::Run(). More DRY and less likely to have weird bugs
specific to the player (i.e the previous freezing on pause/stop).
Refactor PowerPC::state into CPU since it manages the state of the
CPU Thread which is controlled by CPU, not PowerPC. This simplifies
the architecture somewhat and eliminates races that can be caused by
calling PowerPC state functions directly instead of using CPU's
(because they bypassed the EnableStepping lock).
We don't throttle by frames, we throttle by coretiming speed.
So looking up VI for calculating the speed was just very wrong.
The new ini option is a float, 1.0f for fullspeed.
In the GUI, percentual values are used.