dolphin/Source/Core/Core/PowerPC/PPCAnalyst.cpp

1016 lines
25 KiB
C++
Raw Normal View History

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include <queue>
#include <string>
#include "Common/StringUtil.h"
#include "Core/ConfigManager.h"
#include "Core/GeckoCode.h"
#include "Core/HW/Memmap.h"
#include "Core/PowerPC/JitInterface.h"
#include "Core/PowerPC/PPCAnalyst.h"
#include "Core/PowerPC/PPCSymbolDB.h"
#include "Core/PowerPC/PPCTables.h"
#include "Core/PowerPC/SignatureDB.h"
#include "Core/PowerPC/Interpreter/Interpreter.h"
// Analyzes PowerPC code in memory to find functions
// After running, for each function we will know what functions it calls
// and what functions calls it. That is, we will have an incomplete call graph,
// but only missing indirect branches.
// The results of this analysis is displayed in the code browsing sections at the bottom left
// of the disassembly window (debugger).
// It is also useful for finding function boundaries so that we can find, fingerprint and detect library functions.
// We don't do this much currently. Only for the special case Super Monkey Ball.
namespace PPCAnalyst {
using namespace std;
static const int CODEBUFFER_SIZE = 32000;
// 0 does not perform block merging
static const int FUNCTION_FOLLOWING_THRESHOLD = 16;
CodeBuffer::CodeBuffer(int size)
{
codebuffer = new PPCAnalyst::CodeOp[size];
size_ = size;
}
CodeBuffer::~CodeBuffer()
{
delete[] codebuffer;
}
void AnalyzeFunction2(Symbol &func);
u32 EvaluateBranchTarget(UGeckoInstruction instr, u32 pc);
#define INVALID_TARGET ((u32)-1)
u32 EvaluateBranchTarget(UGeckoInstruction instr, u32 pc)
{
switch (instr.OPCD)
{
case 18://branch instruction
{
u32 target = SignExt26(instr.LI<<2);
if (!instr.AA)
target += pc;
return target;
}
default:
return INVALID_TARGET;
}
}
//To find the size of each found function, scan
//forward until we hit blr. In the meantime, collect information
//about which functions this function calls.
//Also collect which internal branch goes the farthest
//If any one goes farther than the blr, assume that there is more than
//one blr, and keep scanning.
bool AnalyzeFunction(u32 startAddr, Symbol &func, int max_size)
{
if (!func.name.size())
func.name = StringFromFormat("zz_%07x_", startAddr & 0x0FFFFFF);
if (func.analyzed >= 1)
return true; // No error, just already did it.
func.calls.clear();
func.callers.clear();
func.size = 0;
func.flags = FFLAG_LEAF;
u32 addr = startAddr;
u32 farthestInternalBranchTarget = startAddr;
int numInternalBranches = 0;
while (true)
{
func.size += 4;
if (func.size >= CODEBUFFER_SIZE * 4) //weird
return false;
UGeckoInstruction instr = (UGeckoInstruction)Memory::ReadUnchecked_U32(addr);
if (max_size && func.size > max_size)
{
func.address = startAddr;
func.analyzed = 1;
func.hash = SignatureDB::ComputeCodeChecksum(startAddr, addr);
if (numInternalBranches == 0)
func.flags |= FFLAG_STRAIGHT;
return true;
}
if (PPCTables::IsValidInstruction(instr))
{
if (instr.hex == 0x4e800020) //4e800021 is blrl, not the end of a function
{
//BLR
if (farthestInternalBranchTarget > addr)
{
//bah, not this one, continue..
}
else
{
//a final blr!
//We're done! Looks like we have a neat valid function. Perfect.
//Let's calc the checksum and get outta here
func.address = startAddr;
func.analyzed = 1;
func.hash = SignatureDB::ComputeCodeChecksum(startAddr, addr);
if (numInternalBranches == 0)
func.flags |= FFLAG_STRAIGHT;
return true;
}
}
/*
else if ((instr.hex & 0xFC000000) == (0x4b000000 & 0xFC000000) && !instr.LK) {
u32 target = addr + SignExt26(instr.LI << 2);
if (target < startAddr || (max_size && target > max_size+startAddr))
{
//block ends by branching away. We're done!
func.size *= 4; // into bytes
func.address = startAddr;
func.analyzed = 1;
func.hash = SignatureDB::ComputeCodeChecksum(startAddr, addr);
if (numInternalBranches == 0)
func.flags |= FFLAG_STRAIGHT;
return true;
}
}*/
else if (instr.hex == 0x4e800021 || instr.hex == 0x4e800420 || instr.hex == 0x4e800421)
{
func.flags &= ~FFLAG_LEAF;
func.flags |= FFLAG_EVIL;
}
else if (instr.hex == 0x4c000064)
{
func.flags &= ~FFLAG_LEAF;
func.flags |= FFLAG_RFI;
}
else
{
if (instr.OPCD == 16)
{
u32 target = SignExt16(instr.BD << 2);
if (!instr.AA)
target += addr;
if (target > farthestInternalBranchTarget && !instr.LK)
{
farthestInternalBranchTarget = target;
}
numInternalBranches++;
}
else
{
u32 target = EvaluateBranchTarget(instr, addr);
if (target != INVALID_TARGET && instr.LK)
{
//we found a branch-n-link!
func.calls.push_back(SCall(target,addr));
func.flags &= ~FFLAG_LEAF;
}
}
}
}
else
{
return false;
}
addr += 4;
}
}
// Second pass analysis, done after the first pass is done for all functions
// so we have more information to work with
void AnalyzeFunction2(Symbol *func)
{
u32 flags = func->flags;
bool nonleafcall = false;
for (const SCall& c : func->calls)
{
Symbol *called_func = g_symbolDB.GetSymbolFromAddr(c.function);
if (called_func && (called_func->flags & FFLAG_LEAF) == 0)
{
nonleafcall = true;
break;
}
}
if (nonleafcall && !(flags & FFLAG_EVIL) && !(flags & FFLAG_RFI))
flags |= FFLAG_ONLYCALLSNICELEAFS;
func->flags = flags;
}
// IMPORTANT - CURRENTLY ASSUMES THAT A IS A COMPARE
bool CanSwapAdjacentOps(const CodeOp &a, const CodeOp &b)
{
const GekkoOPInfo *b_info = b.opinfo;
int b_flags = b_info->flags;
if (b_flags & (FL_SET_CRx | FL_ENDBLOCK | FL_TIMER | FL_EVIL))
return false;
if ((b_flags & (FL_RC_BIT | FL_RC_BIT_F)) && (b.inst.hex & 1))
return false;
switch (b.inst.OPCD)
{
case 16:
case 18:
//branches. Do not swap.
case 17: //sc
case 46: //lmw
case 19: //table19 - lots of tricky stuff
return false;
}
// For now, only integer ops acceptable. Any instruction which can raise an
// interrupt is *not* a possible swap candidate: see [1] for an example of
// a crash caused by this error.
//
// [1] https://code.google.com/p/dolphin-emu/issues/detail?id=5864#c7
if (b_info->type != OPTYPE_INTEGER)
return false;
// Check that we have no register collisions.
// That is, check that none of b's outputs matches any of a's inputs,
// and that none of a's outputs matches any of b's inputs.
// The latter does not apply if a is a cmp, of course, but doesn't hurt to check.
for (int j = 0; j < 3; j++)
{
int regInA = a.regsIn[j];
int regInB = b.regsIn[j];
if (regInA >= 0 &&
(b.regsOut[0] == regInA ||
b.regsOut[1] == regInA))
{
// reg collision! don't swap
return false;
}
if (regInB >= 0 &&
(a.regsOut[0] == regInB ||
a.regsOut[1] == regInB))
{
// reg collision! don't swap
return false;
}
}
return true;
}
// Does not yet perform inlining - although there are plans for that.
// Returns the exit address of the next PC
u32 Flatten(u32 address, int *realsize, BlockStats *st, BlockRegStats *gpa,
BlockRegStats *fpa, bool &broken_block, CodeBuffer *buffer,
int blockSize, u32* merged_addresses,
int capacity_of_merged_addresses, int& size_of_merged_addresses)
{
if (capacity_of_merged_addresses < FUNCTION_FOLLOWING_THRESHOLD) {
PanicAlert("Capacity of merged_addresses is too small!");
}
std::fill_n(merged_addresses, capacity_of_merged_addresses, 0);
merged_addresses[0] = address;
size_of_merged_addresses = 1;
memset(st, 0, sizeof(*st));
// Disabled the following optimization in preference of FAST_ICACHE
//UGeckoInstruction previnst = Memory::Read_Opcode_JIT_LC(address - 4);
//if (previnst.hex == 0x4e800020)
// st->isFirstBlockOfFunction = true;
gpa->any = true;
fpa->any = false;
for (int i = 0; i < 32; i++)
{
gpa->firstRead[i] = -1;
gpa->firstWrite[i] = -1;
gpa->numReads[i] = 0;
gpa->numWrites[i] = 0;
}
u32 blockstart = address;
int maxsize = blockSize;
int num_inst = 0;
int numFollows = 0;
int numCycles = 0;
CodeOp *code = buffer->codebuffer;
bool foundExit = false;
u32 returnAddress = 0;
// Do analysis of the code, look for dependencies etc
int numSystemInstructions = 0;
for (int i = 0; i < maxsize; i++)
{
UGeckoInstruction inst = JitInterface::Read_Opcode_JIT(address);
if (inst.hex != 0)
{
num_inst++;
memset(&code[i], 0, sizeof(CodeOp));
GekkoOPInfo *opinfo = GetOpInfo(inst);
code[i].opinfo = opinfo;
// FIXME: code[i].address may not be correct due to CST1 code.
code[i].address = address;
code[i].inst = inst;
code[i].branchTo = -1;
code[i].branchToIndex = -1;
code[i].skip = false;
numCycles += opinfo->numCycles;
code[i].wantsCR0 = false;
code[i].wantsCR1 = false;
code[i].wantsPS1 = false;
int flags = opinfo->flags;
if (flags & FL_USE_FPU)
fpa->any = true;
if (flags & FL_TIMER)
gpa->anyTimer = true;
// Does the instruction output CR0?
if (flags & FL_RC_BIT)
code[i].outputCR0 = inst.hex & 1; //todo fix
else if ((flags & FL_SET_CRn) && inst.CRFD == 0)
code[i].outputCR0 = true;
else
code[i].outputCR0 = (flags & FL_SET_CR0) ? true : false;
// Does the instruction output CR1?
if (flags & FL_RC_BIT_F)
code[i].outputCR1 = inst.hex & 1; //todo fix
else if ((flags & FL_SET_CRn) && inst.CRFD == 1)
code[i].outputCR1 = true;
else
code[i].outputCR1 = (flags & FL_SET_CR1) ? true : false;
int numOut = 0;
int numIn = 0;
if (flags & FL_OUT_A)
{
code[i].regsOut[numOut++] = inst.RA;
gpa->SetOutputRegister(inst.RA, i);
}
if (flags & FL_OUT_D)
{
code[i].regsOut[numOut++] = inst.RD;
gpa->SetOutputRegister(inst.RD, i);
}
if (flags & FL_OUT_S)
{
code[i].regsOut[numOut++] = inst.RS;
gpa->SetOutputRegister(inst.RS, i);
}
if ((flags & FL_IN_A) || ((flags & FL_IN_A0) && inst.RA != 0))
{
code[i].regsIn[numIn++] = inst.RA;
gpa->SetInputRegister(inst.RA, i);
}
if (flags & FL_IN_B)
{
code[i].regsIn[numIn++] = inst.RB;
gpa->SetInputRegister(inst.RB, i);
}
if (flags & FL_IN_C)
{
code[i].regsIn[numIn++] = inst.RC;
gpa->SetInputRegister(inst.RC, i);
}
if (flags & FL_IN_S)
{
code[i].regsIn[numIn++] = inst.RS;
gpa->SetInputRegister(inst.RS, i);
}
// Set remaining register slots as unused (-1)
for (int j = numIn; j < 3; j++)
code[i].regsIn[j] = -1;
for (int j = numOut; j < 2; j++)
code[i].regsOut[j] = -1;
for (int j = 0; j < 3; j++)
code[i].fregsIn[j] = -1;
code[i].fregOut = -1;
switch (opinfo->type)
{
case OPTYPE_INTEGER:
case OPTYPE_LOAD:
case OPTYPE_STORE:
case OPTYPE_LOADFP:
case OPTYPE_STOREFP:
break;
case OPTYPE_FPU:
break;
case OPTYPE_BRANCH:
if (code[i].inst.hex == 0x4e800020)
{
// For analysis purposes, we can assume that blr eats flags.
code[i].outputCR0 = true;
code[i].outputCR1 = true;
}
break;
case OPTYPE_SYSTEM:
case OPTYPE_SYSTEMFP:
numSystemInstructions++;
break;
}
bool follow = false;
u32 destination = 0;
if (inst.OPCD == 18 && blockSize > 1)
{
//Is bx - should we inline? yes!
if (inst.AA)
destination = SignExt26(inst.LI << 2);
else
destination = address + SignExt26(inst.LI << 2);
if (destination != blockstart)
follow = true;
}
else if (inst.OPCD == 19 && inst.SUBOP10 == 16 &&
(inst.BO & (1 << 4)) && (inst.BO & (1 << 2)) &&
returnAddress != 0)
{
// bclrx with unconditional branch = return
follow = true;
destination = returnAddress;
returnAddress = 0;
if (inst.LK)
returnAddress = address + 4;
}
else if (inst.OPCD == 31 && inst.SUBOP10 == 467)
{
// mtspr
const u32 index = (inst.SPRU << 5) | (inst.SPRL & 0x1F);
if (index == SPR_LR) {
// We give up to follow the return address
// because we have to check the register usage.
returnAddress = 0;
}
}
if (follow)
numFollows++;
// TODO: Find the optimal value for FUNCTION_FOLLOWING_THRESHOLD.
// If it is small, the performance will be down.
// If it is big, the size of generated code will be big and
// cache clearning will happen many times.
// TODO: Investivate the reason why
// "0" is fastest in some games, MP2 for example.
if (numFollows > FUNCTION_FOLLOWING_THRESHOLD)
follow = false;
if (!SConfig::GetInstance().m_LocalCoreStartupParameter.bMergeBlocks) {
follow = false;
}
if (!follow)
{
if (opinfo->flags & FL_ENDBLOCK) //right now we stop early
{
foundExit = true;
break;
}
address += 4;
}
else
{
// We don't "code[i].skip = true" here
// because bx may store a certain value to the link register.
// Instead, we skip a part of bx in Jit**::bx().
address = destination;
merged_addresses[size_of_merged_addresses++] = address;
}
}
else
{
// ISI exception or other critical memory exception occurred (game over)
break;
}
}
st->numCycles = numCycles;
// Instruction Reordering Pass
if (num_inst > 1)
{
// Bubble down compares towards branches, so that they can be merged.
// -2: -1 for the pair, -1 for not swapping with the final instruction which is probably the branch.
for (int i = 0; i < num_inst - 2; i++)
{
CodeOp &a = code[i];
CodeOp &b = code[i + 1];
// All integer compares can be reordered.
if ((a.inst.OPCD == 10 || a.inst.OPCD == 11) ||
(a.inst.OPCD == 31 && (a.inst.SUBOP10 == 0 || a.inst.SUBOP10 == 32)))
{
// Got a compare instruction.
if (CanSwapAdjacentOps(a, b)) {
// Alright, let's bubble it down!
CodeOp c = a;
a = b;
b = c;
}
}
}
}
if (!foundExit && num_inst > 0)
{
// A broken block is a block that does not end in a branch
broken_block = true;
}
// Scan for CR0 dependency
// assume next block wants CR0 to be safe
bool wantsCR0 = true;
bool wantsCR1 = true;
bool wantsPS1 = true;
for (int i = num_inst - 1; i >= 0; i--)
{
if (code[i].outputCR0)
wantsCR0 = false;
if (code[i].outputCR1)
wantsCR1 = false;
if (code[i].outputPS1)
wantsPS1 = false;
wantsCR0 |= code[i].wantsCR0;
wantsCR1 |= code[i].wantsCR1;
wantsPS1 |= code[i].wantsPS1;
code[i].wantsCR0 = wantsCR0;
code[i].wantsCR1 = wantsCR1;
code[i].wantsPS1 = wantsPS1;
}
*realsize = num_inst;
// ...
return address;
}
// Most functions that are relevant to analyze should be
// called by another function. Therefore, let's scan the
// entire space for bl operations and find what functions
// get called.
void FindFunctionsFromBranches(u32 startAddr, u32 endAddr, SymbolDB *func_db)
{
for (u32 addr = startAddr; addr < endAddr; addr+=4)
{
UGeckoInstruction instr = (UGeckoInstruction)Memory::ReadUnchecked_U32(addr);
if (PPCTables::IsValidInstruction(instr))
{
switch (instr.OPCD)
{
case 18://branch instruction
{
if (instr.LK) //bl
{
u32 target = SignExt26(instr.LI << 2);
if (!instr.AA)
target += addr;
if (Memory::IsRAMAddress(target))
{
func_db->AddFunction(target);
}
}
}
break;
default:
break;
}
}
}
}
void FindFunctionsAfterBLR(PPCSymbolDB *func_db)
{
vector<u32> funcAddrs;
for (const auto& func : func_db->Symbols())
funcAddrs.push_back(func.second.address + func.second.size);
for (u32& location : funcAddrs)
{
while (true)
{
if (PPCTables::IsValidInstruction(Memory::Read_Instruction(location)))
{
//check if this function is already mapped
Symbol *f = func_db->AddFunction(location);
if (!f)
break;
else
location += f->size;
}
else
break;
}
}
}
void FindFunctions(u32 startAddr, u32 endAddr, PPCSymbolDB *func_db)
{
//Step 1: Find all functions
FindFunctionsFromBranches(startAddr, endAddr, func_db);
FindFunctionsAfterBLR(func_db);
//Step 2:
func_db->FillInCallers();
int numLeafs = 0, numNice = 0, numUnNice = 0;
int numTimer = 0, numRFI = 0, numStraightLeaf = 0;
int leafSize = 0, niceSize = 0, unniceSize = 0;
for (auto& func : func_db->AccessSymbols())
{
if (func.second.address == 4)
{
WARN_LOG(OSHLE, "Weird function");
continue;
}
AnalyzeFunction2(&(func.second));
Symbol &f = func.second;
if (f.name.substr(0, 3) == "zzz")
{
if (f.flags & FFLAG_LEAF)
f.name += "_leaf";
if (f.flags & FFLAG_STRAIGHT)
f.name += "_straight";
}
if (f.flags & FFLAG_LEAF)
{
numLeafs++;
leafSize += f.size;
}
else if (f.flags & FFLAG_ONLYCALLSNICELEAFS)
{
numNice++;
niceSize += f.size;
}
else
{
numUnNice++;
unniceSize += f.size;
}
if (f.flags & FFLAG_TIMERINSTRUCTIONS)
numTimer++;
if (f.flags & FFLAG_RFI)
numRFI++;
if ((f.flags & FFLAG_STRAIGHT) && (f.flags & FFLAG_LEAF))
numStraightLeaf++;
}
if (numLeafs == 0)
leafSize = 0;
else
leafSize /= numLeafs;
if (numNice == 0)
niceSize = 0;
else
niceSize /= numNice;
if (numUnNice == 0)
unniceSize = 0;
else
unniceSize /= numUnNice;
INFO_LOG(OSHLE, "Functions analyzed. %i leafs, %i nice, %i unnice."
"%i timer, %i rfi. %i are branchless leafs.", numLeafs,
numNice, numUnNice, numTimer, numRFI, numStraightLeaf);
INFO_LOG(OSHLE, "Average size: %i (leaf), %i (nice), %i(unnice)",
leafSize, niceSize, unniceSize);
}
void PPCAnalyser::ReorderInstructions(u32 instructions, CodeOp *code)
{
// Instruction Reordering Pass
// Bubble down compares towards branches, so that they can be merged.
// -2: -1 for the pair, -1 for not swapping with the final instruction which is probably the branch.
for (u32 i = 0; i < (instructions - 2); ++i)
{
CodeOp &a = code[i];
CodeOp &b = code[i + 1];
// All integer compares can be reordered.
if ((a.inst.OPCD == 10 || a.inst.OPCD == 11) ||
(a.inst.OPCD == 31 && (a.inst.SUBOP10 == 0 || a.inst.SUBOP10 == 32)))
{
// Got a compare instruction.
if (CanSwapAdjacentOps(a, b)) {
// Alright, let's bubble it down!
CodeOp c = a;
a = b;
b = c;
}
}
}
}
void PPCAnalyser::SetInstructionStats(CodeBlock *block, CodeOp *code, GekkoOPInfo *opinfo, u32 index)
{
code->wantsCR0 = false;
code->wantsCR1 = false;
code->wantsPS1 = false;
if (opinfo->flags & FL_USE_FPU)
block->m_fpa->any = true;
if (opinfo->flags & FL_TIMER)
block->m_gpa->anyTimer = true;
// Does the instruction output CR0?
if (opinfo->flags & FL_RC_BIT)
code->outputCR0 = code->inst.hex & 1; //todo fix
else if ((opinfo->flags & FL_SET_CRn) && code->inst.CRFD == 0)
code->outputCR0 = true;
else
code->outputCR0 = (opinfo->flags & FL_SET_CR0) ? true : false;
// Does the instruction output CR1?
if (opinfo->flags & FL_RC_BIT_F)
code->outputCR1 = code->inst.hex & 1; //todo fix
else if ((opinfo->flags & FL_SET_CRn) && code->inst.CRFD == 1)
code->outputCR1 = true;
else
code->outputCR1 = (opinfo->flags & FL_SET_CR1) ? true : false;
int numOut = 0;
int numIn = 0;
if (opinfo->flags & FL_OUT_A)
{
code->regsOut[numOut++] = code->inst.RA;
block->m_gpa->SetOutputRegister(code->inst.RA, index);
}
if (opinfo->flags & FL_OUT_D)
{
code->regsOut[numOut++] = code->inst.RD;
block->m_gpa->SetOutputRegister(code->inst.RD, index);
}
if (opinfo->flags & FL_OUT_S)
{
code->regsOut[numOut++] = code->inst.RS;
block->m_gpa->SetOutputRegister(code->inst.RS, index);
}
if ((opinfo->flags & FL_IN_A) || ((opinfo->flags & FL_IN_A0) && code->inst.RA != 0))
{
code->regsIn[numIn++] = code->inst.RA;
block->m_gpa->SetInputRegister(code->inst.RA, index);
}
if (opinfo->flags & FL_IN_B)
{
code->regsIn[numIn++] = code->inst.RB;
block->m_gpa->SetInputRegister(code->inst.RB, index);
}
if (opinfo->flags & FL_IN_C)
{
code->regsIn[numIn++] = code->inst.RC;
block->m_gpa->SetInputRegister(code->inst.RC, index);
}
if (opinfo->flags & FL_IN_S)
{
code->regsIn[numIn++] = code->inst.RS;
block->m_gpa->SetInputRegister(code->inst.RS, index);
}
// Set remaining register slots as unused (-1)
for (int j = numIn; j < 3; j++)
code->regsIn[j] = -1;
for (int j = numOut; j < 2; j++)
code->regsOut[j] = -1;
for (int j = 0; j < 3; j++)
code->fregsIn[j] = -1;
code->fregOut = -1;
switch (opinfo->type)
{
case OPTYPE_INTEGER:
case OPTYPE_LOAD:
case OPTYPE_STORE:
case OPTYPE_LOADFP:
case OPTYPE_STOREFP:
break;
case OPTYPE_FPU:
break;
case OPTYPE_BRANCH:
if (code->inst.hex == 0x4e800020)
{
// For analysis purposes, we can assume that blr eats opinfo->flags.
code->outputCR0 = true;
code->outputCR1 = true;
}
break;
case OPTYPE_SYSTEM:
case OPTYPE_SYSTEMFP:
break;
}
}
u32 PPCAnalyser::Analyse(u32 address, CodeBlock *block, CodeBuffer *buffer, u32 blockSize)
{
// Clear block stats
memset(block->m_stats, 0, sizeof(BlockStats));
// Clear register stats
block->m_gpa->any = true;
block->m_fpa->any = false;
block->m_gpa->Clear();
block->m_fpa->Clear();
// Set the blocks start address
block->m_address = address;
// Reset our block state
block->m_broken = false;
block->m_instructions = 0;
CodeOp *code = buffer->codebuffer;
bool found_exit = false;
u32 returnAddress = 0;
u32 numFollows = 0;
u32 num_inst = 0;
for (u32 i = 0; i < blockSize; ++i)
{
UGeckoInstruction inst = JitInterface::Read_Opcode_JIT(address);
if (inst.hex != 0)
{
num_inst++;
memset(&code[i], 0, sizeof(CodeOp));
GekkoOPInfo *opinfo = GetOpInfo(inst);
code[i].opinfo = opinfo;
code[i].address = address;
code[i].inst = inst;
code[i].branchTo = -1;
code[i].branchToIndex = -1;
code[i].skip = false;
block->m_stats->numCycles += opinfo->numCycles;
SetInstructionStats(block, &code[i], opinfo, i);
bool follow = false;
u32 destination = 0;
bool conditional_continue = false;
// Do we inline leaf functions?
if (HasOption(OPTION_LEAF_INLINE))
{
if (inst.OPCD == 18 && blockSize > 1)
{
//Is bx - should we inline? yes!
if (inst.AA)
destination = SignExt26(inst.LI << 2);
else
destination = address + SignExt26(inst.LI << 2);
if (destination != block->m_address)
follow = true;
}
else if (inst.OPCD == 19 && inst.SUBOP10 == 16 &&
(inst.BO & (1 << 4)) && (inst.BO & (1 << 2)) &&
returnAddress != 0)
{
// bclrx with unconditional branch = return
follow = true;
destination = returnAddress;
returnAddress = 0;
if (inst.LK)
returnAddress = address + 4;
}
else if (inst.OPCD == 31 && inst.SUBOP10 == 467)
{
// mtspr
const u32 index = (inst.SPRU << 5) | (inst.SPRL & 0x1F);
if (index == SPR_LR) {
// We give up to follow the return address
// because we have to check the register usage.
returnAddress = 0;
}
}
// TODO: Find the optimal value for FUNCTION_FOLLOWING_THRESHOLD.
// If it is small, the performance will be down.
// If it is big, the size of generated code will be big and
// cache clearning will happen many times.
// TODO: Investivate the reason why
// "0" is fastest in some games, MP2 for example.
if (numFollows > FUNCTION_FOLLOWING_THRESHOLD)
follow = false;
}
if (HasOption(OPTION_CONDITIONAL_CONTINUE))
{
if (inst.OPCD == 16 &&
((inst.BO & BO_DONT_DECREMENT_FLAG) == 0 || (inst.BO & BO_DONT_CHECK_CONDITION) == 0))
{
// bcx with conditional branch
conditional_continue = true;
}
else if (inst.OPCD == 19 && inst.SUBOP10 == 16 &&
((inst.BO & BO_DONT_DECREMENT_FLAG) == 0 || (inst.BO & BO_DONT_CHECK_CONDITION) == 0))
{
// bclrx with conditional branch
conditional_continue = true;
}
else if (inst.OPCD == 3 ||
(inst.OPCD == 31 && inst.SUBOP10 == 4))
{
// tw/twi tests and raises an exception
conditional_continue = true;
}
else if (inst.OPCD == 19 && inst.SUBOP10 == 528 &&
(inst.BO_2 & BO_DONT_CHECK_CONDITION) == 0)
{
// Rare bcctrx with conditional branch
// Seen in NES games
conditional_continue = true;
}
}
if (!follow)
{
if (!conditional_continue && opinfo->flags & FL_ENDBLOCK) //right now we stop early
{
found_exit = true;
break;
}
address += 4;
}
// XXX: We don't support inlining yet.
#if 0
else
{
numFollows++;
// We don't "code[i].skip = true" here
// because bx may store a certain value to the link register.
// Instead, we skip a part of bx in Jit**::bx().
address = destination;
merged_addresses[size_of_merged_addresses++] = address;
}
#endif
}
else
{
// ISI exception or other critical memory exception occured (game over)
ERROR_LOG(DYNA_REC, "Instruction hex was 0!");
break;
}
}
if (block->m_instructions > 1)
ReorderInstructions(block->m_instructions, code);
if ((!found_exit && num_inst > 0) || blockSize == 1)
{
// We couldn't find an exit
block->m_broken = true;
}
// Scan for CR0 dependency
// assume next block wants CR0 to be safe
bool wantsCR0 = true;
bool wantsCR1 = true;
bool wantsPS1 = true;
for (int i = block->m_instructions - 1; i >= 0; i--)
{
if (code[i].outputCR0)
wantsCR0 = false;
if (code[i].outputCR1)
wantsCR1 = false;
if (code[i].outputPS1)
wantsPS1 = false;
wantsCR0 |= code[i].wantsCR0;
wantsCR1 |= code[i].wantsCR1;
wantsPS1 |= code[i].wantsPS1;
code[i].wantsCR0 = wantsCR0;
code[i].wantsCR1 = wantsCR1;
code[i].wantsPS1 = wantsPS1;
}
block->m_instructions = num_inst;
return address;
}
} // namespace