diff --git a/src/api-impl/android/hardware/GeomagneticField.java b/src/api-impl/android/hardware/GeomagneticField.java new file mode 100644 index 00000000..11518277 --- /dev/null +++ b/src/api-impl/android/hardware/GeomagneticField.java @@ -0,0 +1,388 @@ +/* + * Copyright (C) 2009 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package android.hardware; + +import java.util.Calendar; +import java.util.TimeZone; + +/** + * Estimates magnetic field at a given point on + * Earth, and in particular, to compute the magnetic declination from true + * north. + * + *
This uses the World Magnetic Model produced by the United States National + * Geospatial-Intelligence Agency. More details about the model can be found at + * http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml. + * This class currently uses WMM-2020 which is valid until 2025, but should + * produce acceptable results for several years after that. Future versions of + * Android may use a newer version of the model. + */ +public class GeomagneticField { + // The magnetic field at a given point, in nanoteslas in geodetic + // coordinates. + private float mX; + private float mY; + private float mZ; + + // Geocentric coordinates -- set by computeGeocentricCoordinates. + private float mGcLatitudeRad; + private float mGcLongitudeRad; + private float mGcRadiusKm; + + // Constants from WGS84 (the coordinate system used by GPS) + static private final float EARTH_SEMI_MAJOR_AXIS_KM = 6378.137f; + static private final float EARTH_SEMI_MINOR_AXIS_KM = 6356.7523142f; + static private final float EARTH_REFERENCE_RADIUS_KM = 6371.2f; + + // These coefficients and the formulae used below are from: + // NOAA Technical Report: The US/UK World Magnetic Model for 2020-2025 + static private final float[][] G_COEFF = new float[][] { + {0.0f}, + {-29404.5f, -1450.7f}, + {-2500.0f, 2982.0f, 1676.8f}, + {1363.9f, -2381.0f, 1236.2f, 525.7f}, + {903.1f, 809.4f, 86.2f, -309.4f, 47.9f}, + {-234.4f, 363.1f, 187.8f, -140.7f, -151.2f, 13.7f}, + {65.9f, 65.6f, 73.0f, -121.5f, -36.2f, 13.5f, -64.7f}, + {80.6f, -76.8f, -8.3f, 56.5f, 15.8f, 6.4f, -7.2f, 9.8f}, + {23.6f, 9.8f, -17.5f, -0.4f, -21.1f, 15.3f, 13.7f, -16.5f, -0.3f}, + {5.0f, 8.2f, 2.9f, -1.4f, -1.1f, -13.3f, 1.1f, 8.9f, -9.3f, -11.9f}, + {-1.9f, -6.2f, -0.1f, 1.7f, -0.9f, 0.6f, -0.9f, 1.9f, 1.4f, -2.4f, -3.9f}, + {3.0f, -1.4f, -2.5f, 2.4f, -0.9f, 0.3f, -0.7f, -0.1f, 1.4f, -0.6f, 0.2f, 3.1f}, + {-2.0f, -0.1f, 0.5f, 1.3f, -1.2f, 0.7f, 0.3f, 0.5f, -0.2f, -0.5f, 0.1f, -1.1f, -0.3f}}; + + static private final float[][] H_COEFF = new float[][] { + {0.0f}, + {0.0f, 4652.9f}, + {0.0f, -2991.6f, -734.8f}, + {0.0f, -82.2f, 241.8f, -542.9f}, + {0.0f, 282.0f, -158.4f, 199.8f, -350.1f}, + {0.0f, 47.7f, 208.4f, -121.3f, 32.2f, 99.1f}, + {0.0f, -19.1f, 25.0f, 52.7f, -64.4f, 9.0f, 68.1f}, + {0.0f, -51.4f, -16.8f, 2.3f, 23.5f, -2.2f, -27.2f, -1.9f}, + {0.0f, 8.4f, -15.3f, 12.8f, -11.8f, 14.9f, 3.6f, -6.9f, 2.8f}, + {0.0f, -23.3f, 11.1f, 9.8f, -5.1f, -6.2f, 7.8f, 0.4f, -1.5f, 9.7f}, + {0.0f, 3.4f, -0.2f, 3.5f, 4.8f, -8.6f, -0.1f, -4.2f, -3.4f, -0.1f, -8.8f}, + {0.0f, 0.0f, 2.6f, -0.5f, -0.4f, 0.6f, -0.2f, -1.7f, -1.6f, -3.0f, -2.0f, -2.6f}, + {0.0f, -1.2f, 0.5f, 1.3f, -1.8f, 0.1f, 0.7f, -0.1f, 0.6f, 0.2f, -0.9f, 0.0f, 0.5f}}; + + static private final float[][] DELTA_G = new float[][] { + {0.0f}, + {6.7f, 7.7f}, + {-11.5f, -7.1f, -2.2f}, + {2.8f, -6.2f, 3.4f, -12.2f}, + {-1.1f, -1.6f, -6.0f, 5.4f, -5.5f}, + {-0.3f, 0.6f, -0.7f, 0.1f, 1.2f, 1.0f}, + {-0.6f, -0.4f, 0.5f, 1.4f, -1.4f, 0.0f, 0.8f}, + {-0.1f, -0.3f, -0.1f, 0.7f, 0.2f, -0.5f, -0.8f, 1.0f}, + {-0.1f, 0.1f, -0.1f, 0.5f, -0.1f, 0.4f, 0.5f, 0.0f, 0.4f}, + {-0.1f, -0.2f, 0.0f, 0.4f, -0.3f, 0.0f, 0.3f, 0.0f, 0.0f, -0.4f}, + {0.0f, 0.0f, 0.0f, 0.2f, -0.1f, -0.2f, 0.0f, -0.1f, -0.2f, -0.1f, 0.0f}, + {0.0f, -0.1f, 0.0f, 0.0f, 0.0f, -0.1f, 0.0f, 0.0f, -0.1f, -0.1f, -0.1f, -0.1f}, + {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.1f}}; + + static private final float[][] DELTA_H = new float[][] { + {0.0f}, + {0.0f, -25.1f}, + {0.0f, -30.2f, -23.9f}, + {0.0f, 5.7f, -1.0f, 1.1f}, + {0.0f, 0.2f, 6.9f, 3.7f, -5.6f}, + {0.0f, 0.1f, 2.5f, -0.9f, 3.0f, 0.5f}, + {0.0f, 0.1f, -1.8f, -1.4f, 0.9f, 0.1f, 1.0f}, + {0.0f, 0.5f, 0.6f, -0.7f, -0.2f, -1.2f, 0.2f, 0.3f}, + {0.0f, -0.3f, 0.7f, -0.2f, 0.5f, -0.3f, -0.5f, 0.4f, 0.1f}, + {0.0f, -0.3f, 0.2f, -0.4f, 0.4f, 0.1f, 0.0f, -0.2f, 0.5f, 0.2f}, + {0.0f, 0.0f, 0.1f, -0.3f, 0.1f, -0.2f, 0.1f, 0.0f, -0.1f, 0.2f, 0.0f}, + {0.0f, 0.0f, 0.1f, 0.0f, 0.2f, 0.0f, 0.0f, 0.1f, 0.0f, -0.1f, 0.0f, 0.0f}, + {0.0f, 0.0f, 0.0f, -0.1f, 0.1f, 0.0f, 0.0f, 0.0f, 0.1f, 0.0f, 0.0f, 0.0f, -0.1f}}; + + static private final long BASE_TIME = new Calendar.Builder() + .setTimeZone(TimeZone.getTimeZone("UTC")) + .setDate(2020, Calendar.JANUARY, 1) + .build() + .getTimeInMillis(); + + // The ratio between the Gauss-normalized associated Legendre functions and + // the Schmid quasi-normalized ones. Compute these once staticly since they + // don't depend on input variables at all. + static private final float[][] SCHMIDT_QUASI_NORM_FACTORS = + computeSchmidtQuasiNormFactors(G_COEFF.length); + + /** + * Estimate the magnetic field at a given point and time. + * + * @param gdLatitudeDeg + * Latitude in WGS84 geodetic coordinates -- positive is east. + * @param gdLongitudeDeg + * Longitude in WGS84 geodetic coordinates -- positive is north. + * @param altitudeMeters + * Altitude in WGS84 geodetic coordinates, in meters. + * @param timeMillis + * Time at which to evaluate the declination, in milliseconds + * since January 1, 1970. (approximate is fine -- the declination + * changes very slowly). + */ + public GeomagneticField(float gdLatitudeDeg, + float gdLongitudeDeg, + float altitudeMeters, + long timeMillis) { + final int MAX_N = G_COEFF.length; // Maximum degree of the coefficients. + + // We don't handle the north and south poles correctly -- pretend that + // we're not quite at them to avoid crashing. + gdLatitudeDeg = Math.min(90.0f - 1e-5f, + Math.max(-90.0f + 1e-5f, gdLatitudeDeg)); + computeGeocentricCoordinates(gdLatitudeDeg, + gdLongitudeDeg, + altitudeMeters); + + assert G_COEFF.length == H_COEFF.length; + + // Note: LegendreTable computes associated Legendre functions for + // cos(theta). We want the associated Legendre functions for + // sin(latitude), which is the same as cos(PI/2 - latitude), except the + // derivate will be negated. + LegendreTable legendre = + new LegendreTable(MAX_N - 1, + (float)(Math.PI / 2.0 - mGcLatitudeRad)); + + // Compute a table of (EARTH_REFERENCE_RADIUS_KM / radius)^n for i in + // 0..MAX_N-2 (this is much faster than calling Math.pow MAX_N+1 times). + float[] relativeRadiusPower = new float[MAX_N + 2]; + relativeRadiusPower[0] = 1.0f; + relativeRadiusPower[1] = EARTH_REFERENCE_RADIUS_KM / mGcRadiusKm; + for (int i = 2; i < relativeRadiusPower.length; ++i) { + relativeRadiusPower[i] = relativeRadiusPower[i - 1] * + relativeRadiusPower[1]; + } + + // Compute tables of sin(lon * m) and cos(lon * m) for m = 0..MAX_N -- + // this is much faster than calling Math.sin and Math.com MAX_N+1 times. + float[] sinMLon = new float[MAX_N]; + float[] cosMLon = new float[MAX_N]; + sinMLon[0] = 0.0f; + cosMLon[0] = 1.0f; + sinMLon[1] = (float)Math.sin(mGcLongitudeRad); + cosMLon[1] = (float)Math.cos(mGcLongitudeRad); + + for (int m = 2; m < MAX_N; ++m) { + // Standard expansions for sin((m-x)*theta + x*theta) and + // cos((m-x)*theta + x*theta). + int x = m >> 1; + sinMLon[m] = sinMLon[m - x] * cosMLon[x] + cosMLon[m - x] * sinMLon[x]; + cosMLon[m] = cosMLon[m - x] * cosMLon[x] - sinMLon[m - x] * sinMLon[x]; + } + + float inverseCosLatitude = 1.0f / (float)Math.cos(mGcLatitudeRad); + float yearsSinceBase = + (timeMillis - BASE_TIME) / (365f * 24f * 60f * 60f * 1000f); + + // We now compute the magnetic field strength given the geocentric + // location. The magnetic field is the derivative of the potential + // function defined by the model. See NOAA Technical Report: The US/UK + // World Magnetic Model for 2020-2025 for the derivation. + float gcX = 0.0f; // Geocentric northwards component. + float gcY = 0.0f; // Geocentric eastwards component. + float gcZ = 0.0f; // Geocentric downwards component. + + for (int n = 1; n < MAX_N; n++) { + for (int m = 0; m <= n; m++) { + // Adjust the coefficients for the current date. + float g = G_COEFF[n][m] + yearsSinceBase * DELTA_G[n][m]; + float h = H_COEFF[n][m] + yearsSinceBase * DELTA_H[n][m]; + + // Negative derivative with respect to latitude, divided by + // radius. This looks like the negation of the version in the + // NOAA Technical report because that report used + // P_n^m(sin(theta)) and we use P_n^m(cos(90 - theta)), so the + // derivative with respect to theta is negated. + gcX += relativeRadiusPower[n + 2] * (g * cosMLon[m] + h * sinMLon[m]) * legendre.mPDeriv[n][m] * SCHMIDT_QUASI_NORM_FACTORS[n][m]; + + // Negative derivative with respect to longitude, divided by + // radius. + gcY += relativeRadiusPower[n + 2] * m * (g * sinMLon[m] - h * cosMLon[m]) * legendre.mP[n][m] * SCHMIDT_QUASI_NORM_FACTORS[n][m] * inverseCosLatitude; + + // Negative derivative with respect to radius. + gcZ -= (n + 1) * relativeRadiusPower[n + 2] * (g * cosMLon[m] + h * sinMLon[m]) * legendre.mP[n][m] * SCHMIDT_QUASI_NORM_FACTORS[n][m]; + } + } + + // Convert back to geodetic coordinates. This is basically just a + // rotation around the Y-axis by the difference in latitudes between the + // geocentric frame and the geodetic frame. + double latDiffRad = Math.toRadians(gdLatitudeDeg) - mGcLatitudeRad; + mX = (float)(gcX * Math.cos(latDiffRad) + gcZ * Math.sin(latDiffRad)); + mY = gcY; + mZ = (float)(-gcX * Math.sin(latDiffRad) + gcZ * Math.cos(latDiffRad)); + } + + /** + * @return The X (northward) component of the magnetic field in nanoteslas. + */ + public float getX() { + return mX; + } + + /** + * @return The Y (eastward) component of the magnetic field in nanoteslas. + */ + public float getY() { + return mY; + } + + /** + * @return The Z (downward) component of the magnetic field in nanoteslas. + */ + public float getZ() { + return mZ; + } + + /** + * @return The declination of the horizontal component of the magnetic + * field from true north, in degrees (i.e. positive means the + * magnetic field is rotated east that much from true north). + */ + public float getDeclination() { + return (float)Math.toDegrees(Math.atan2(mY, mX)); + } + + /** + * @return The inclination of the magnetic field in degrees -- positive + * means the magnetic field is rotated downwards. + */ + public float getInclination() { + return (float)Math.toDegrees(Math.atan2(mZ, + getHorizontalStrength())); + } + + /** + * @return Horizontal component of the field strength in nanoteslas. + */ + public float getHorizontalStrength() { + return (float)Math.hypot(mX, mY); + } + + /** + * @return Total field strength in nanoteslas. + */ + public float getFieldStrength() { + return (float)Math.sqrt(mX * mX + mY * mY + mZ * mZ); + } + + /** + * @param gdLatitudeDeg + * Latitude in WGS84 geodetic coordinates. + * @param gdLongitudeDeg + * Longitude in WGS84 geodetic coordinates. + * @param altitudeMeters + * Altitude above sea level in WGS84 geodetic coordinates. + * @return Geocentric latitude (i.e. angle between closest point on the + * equator and this point, at the center of the earth. + */ + private void computeGeocentricCoordinates(float gdLatitudeDeg, + float gdLongitudeDeg, + float altitudeMeters) { + float altitudeKm = altitudeMeters / 1000.0f; + float a2 = EARTH_SEMI_MAJOR_AXIS_KM * EARTH_SEMI_MAJOR_AXIS_KM; + float b2 = EARTH_SEMI_MINOR_AXIS_KM * EARTH_SEMI_MINOR_AXIS_KM; + double gdLatRad = Math.toRadians(gdLatitudeDeg); + float clat = (float)Math.cos(gdLatRad); + float slat = (float)Math.sin(gdLatRad); + float tlat = slat / clat; + float latRad = + (float)Math.sqrt(a2 * clat * clat + b2 * slat * slat); + + mGcLatitudeRad = (float)Math.atan(tlat * (latRad * altitudeKm + b2) / (latRad * altitudeKm + a2)); + + mGcLongitudeRad = (float)Math.toRadians(gdLongitudeDeg); + + float radSq = altitudeKm * altitudeKm + 2 * altitudeKm * (float)Math.sqrt(a2 * clat * clat + b2 * slat * slat) + (a2 * a2 * clat * clat + b2 * b2 * slat * slat) / (a2 * clat * clat + b2 * slat * slat); + mGcRadiusKm = (float)Math.sqrt(radSq); + } + + /** + * Utility class to compute a table of Gauss-normalized associated Legendre + * functions P_n^m(cos(theta)) + */ + static private class LegendreTable { + // These are the Gauss-normalized associated Legendre functions -- that + // is, they are normal Legendre functions multiplied by + // (n-m)!/(2n-1)!! (where (2n-1)!! = 1*3*5*...*2n-1) + public final float[][] mP; + + // Derivative of mP, with respect to theta. + public final float[][] mPDeriv; + + /** + * @param maxN + * The maximum n- and m-values to support + * @param thetaRad + * Returned functions will be Gauss-normalized + * P_n^m(cos(thetaRad)), with thetaRad in radians. + */ + public LegendreTable(int maxN, float thetaRad) { + // Compute the table of Gauss-normalized associated Legendre + // functions using standard recursion relations. Also compute the + // table of derivatives using the derivative of the recursion + // relations. + float cos = (float)Math.cos(thetaRad); + float sin = (float)Math.sin(thetaRad); + + mP = new float[maxN + 1][]; + mPDeriv = new float[maxN + 1][]; + mP[0] = new float[] {1.0f}; + mPDeriv[0] = new float[] {0.0f}; + for (int n = 1; n <= maxN; n++) { + mP[n] = new float[n + 1]; + mPDeriv[n] = new float[n + 1]; + for (int m = 0; m <= n; m++) { + if (n == m) { + mP[n][m] = sin * mP[n - 1][m - 1]; + mPDeriv[n][m] = cos * mP[n - 1][m - 1] + sin * mPDeriv[n - 1][m - 1]; + } else if (n == 1 || m == n - 1) { + mP[n][m] = cos * mP[n - 1][m]; + mPDeriv[n][m] = -sin * mP[n - 1][m] + cos * mPDeriv[n - 1][m]; + } else { + assert n > 1 && m < n - 1; + float k = ((n - 1) * (n - 1) - m * m) / (float)((2 * n - 1) * (2 * n - 3)); + mP[n][m] = cos * mP[n - 1][m] - k * mP[n - 2][m]; + mPDeriv[n][m] = -sin * mP[n - 1][m] + cos * mPDeriv[n - 1][m] - k * mPDeriv[n - 2][m]; + } + } + } + } + } + + /** + * Compute the ration between the Gauss-normalized associated Legendre + * functions and the Schmidt quasi-normalized version. This is equivalent to + * sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)! + */ + private static float[][] computeSchmidtQuasiNormFactors(int maxN) { + float[][] schmidtQuasiNorm = new float[maxN + 1][]; + schmidtQuasiNorm[0] = new float[] {1.0f}; + for (int n = 1; n <= maxN; n++) { + schmidtQuasiNorm[n] = new float[n + 1]; + schmidtQuasiNorm[n][0] = + schmidtQuasiNorm[n - 1][0] * (2 * n - 1) / (float)n; + for (int m = 1; m <= n; m++) { + schmidtQuasiNorm[n][m] = schmidtQuasiNorm[n][m - 1] * (float)Math.sqrt((n - m + 1) * (m == 1 ? 2 : 1) / (float)(n + m)); + } + } + return schmidtQuasiNorm; + } +} diff --git a/src/api-impl/meson.build b/src/api-impl/meson.build index eff124b9..a68d6962 100644 --- a/src/api-impl/meson.build +++ b/src/api-impl/meson.build @@ -250,6 +250,7 @@ srcs = [ 'android/graphics/drawable/shapes/RoundRectShape.java', 'android/graphics/drawable/shapes/Shape.java', 'android/hardware/ConsumerIrManager.java', + 'android/hardware/GeomagneticField.java', 'android/hardware/Sensor.java', 'android/hardware/SensorEvent.java', 'android/hardware/SensorEventListener.java',