Port XEX patcher to XenonRecomp. (#433)

* Port XEX patcher to XenonRecomp.

* Update XenonRecomp submodule.
This commit is contained in:
Skyth (Asilkan) 2025-02-19 20:31:01 +03:00 committed by GitHub
parent f123ec7083
commit 5ba4e927ab
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
18 changed files with 31 additions and 1193 deletions

6
.gitmodules vendored
View file

@ -7,9 +7,6 @@
[submodule "tools/XenosRecomp"]
path = tools/XenosRecomp
url = https://github.com/hedge-dev/XenosRecomp.git
[submodule "thirdparty/libmspack"]
path = thirdparty/libmspack
url = https://github.com/kyz/libmspack
[submodule "UnleashedRecompResources"]
path = UnleashedRecompResources
url = https://github.com/hedge-dev/UnleashedRecompResources.git
@ -40,9 +37,6 @@
[submodule "thirdparty/concurrentqueue"]
path = thirdparty/concurrentqueue
url = https://github.com/cameron314/concurrentqueue.git
[submodule "thirdparty/tiny-AES-c"]
path = thirdparty/tiny-AES-c
url = https://github.com/kokke/tiny-AES-c.git
[submodule "thirdparty/magic_enum"]
path = thirdparty/magic_enum
url = https://github.com/Neargye/magic_enum.git

View file

@ -4,7 +4,7 @@
```
git clone --recurse-submodules https://github.com/hedge-dev/UnleashedRecomp.git
```
2. Decompress and decrypt `default.xex`, apply the title update patch (`default.xexp`), and place the resulting file in `./UnleashedRecompLib/private/`.
2. Place `default.xex` and `default.xexp` in `./UnleashedRecompLib/private/`.
3. Decompress `shader.ar` and place the resulting file in `./UnleashedRecompLib/private/`.
4. Open the repository directory in Visual Studio 2022 and wait for CMake generation to complete. If you don't plan to debug, switch to the `x64-Clang-Release` configuration.
5. Under Solution Explorer, right-click and choose "Switch to CMake Targets View".

View file

@ -165,10 +165,8 @@ set(UNLEASHED_RECOMP_UI_CXX_SOURCES
set(UNLEASHED_RECOMP_INSTALL_CXX_SOURCES
"install/installer.cpp"
"install/iso_file_system.cpp"
"install/memory_mapped_file.cpp"
"install/update_checker.cpp"
"install/xcontent_file_system.cpp"
"install/xex_patcher.cpp"
"install/hashes/apotos_shamar.cpp"
"install/hashes/chunnan.cpp"
"install/hashes/empire_city_adabat.cpp"
@ -201,8 +199,6 @@ set(UNLEASHED_RECOMP_THIRDPARTY_SOURCES
"${UNLEASHED_RECOMP_THIRDPARTY_ROOT}/implot/implot.cpp"
"${UNLEASHED_RECOMP_THIRDPARTY_ROOT}/implot/implot_demo.cpp"
"${UNLEASHED_RECOMP_THIRDPARTY_ROOT}/implot/implot_items.cpp"
"${UNLEASHED_RECOMP_THIRDPARTY_ROOT}/libmspack/libmspack/mspack/lzxd.c"
"${UNLEASHED_RECOMP_THIRDPARTY_ROOT}/tiny-AES-c/aes.c"
"${UNLEASHED_RECOMP_TOOLS_ROOT}/XenosRecomp/thirdparty/smol-v/source/smolv.cpp"
)
@ -212,11 +208,8 @@ set(UNLEASHED_RECOMP_THIRDPARTY_INCLUDES
"${UNLEASHED_RECOMP_THIRDPARTY_ROOT}/imgui"
"${UNLEASHED_RECOMP_THIRDPARTY_ROOT}/implot"
"${UNLEASHED_RECOMP_THIRDPARTY_ROOT}/json/include"
"${UNLEASHED_RECOMP_THIRDPARTY_ROOT}/libmspack/libmspack/mspack"
"${UNLEASHED_RECOMP_THIRDPARTY_ROOT}/magic_enum/include"
"${UNLEASHED_RECOMP_THIRDPARTY_ROOT}/stb"
"${UNLEASHED_RECOMP_THIRDPARTY_ROOT}/tiny-AES-c"
"${UNLEASHED_RECOMP_THIRDPARTY_ROOT}/TinySHA1"
"${UNLEASHED_RECOMP_THIRDPARTY_ROOT}/unordered_dense/include"
"${UNLEASHED_RECOMP_THIRDPARTY_ROOT}/volk"
"${UNLEASHED_RECOMP_THIRDPARTY_ROOT}/Vulkan-Headers/include"

View file

@ -598,5 +598,5 @@ XexPatcher::Result Installer::checkGameUpdateCompatibility(const std::filesystem
}
std::vector<uint8_t> patchedBytes;
return XexPatcher::apply(xexBytes, patchBytes, patchedBytes, true);
return XexPatcher::apply(xexBytes.data(), xexBytes.size(), patchBytes.data(), patchBytes.size(), patchedBytes, true);
}

View file

@ -4,7 +4,7 @@
#include <set>
#include "virtual_file_system.h"
#include "xex_patcher.h"
#include <xex_patcher.h>
enum class DLC {
Unknown,

View file

@ -16,7 +16,7 @@
#include "virtual_file_system.h"
#include "memory_mapped_file.h"
#include <memory_mapped_file.h>
struct ISOFileSystem : VirtualFileSystem
{

View file

@ -1,169 +0,0 @@
#include "memory_mapped_file.h"
#if !defined(_WIN32)
# include <cstring>
# include <cstdio>
# include <fcntl.h>
# include <unistd.h>
#endif
MemoryMappedFile::MemoryMappedFile()
{
// Default constructor.
}
MemoryMappedFile::MemoryMappedFile(const std::filesystem::path &path)
{
open(path);
}
MemoryMappedFile::~MemoryMappedFile()
{
close();
}
MemoryMappedFile::MemoryMappedFile(MemoryMappedFile &&other)
{
#if defined(_WIN32)
fileHandle = other.fileHandle;
fileMappingHandle = other.fileMappingHandle;
fileView = other.fileView;
fileSize = other.fileSize;
other.fileHandle = nullptr;
other.fileMappingHandle = nullptr;
other.fileView = nullptr;
other.fileSize.QuadPart = 0;
#else
fileHandle = other.fileHandle;
fileView = other.fileView;
fileSize = other.fileSize;
other.fileHandle = -1;
other.fileView = MAP_FAILED;
other.fileSize = 0;
#endif
}
bool MemoryMappedFile::open(const std::filesystem::path &path)
{
#if defined(_WIN32)
fileHandle = CreateFileW(path.c_str(), GENERIC_READ, FILE_SHARE_READ, nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
if (fileHandle == INVALID_HANDLE_VALUE)
{
fprintf(stderr, "CreateFileW failed with error %lu.\n", GetLastError());
fileHandle = nullptr;
return false;
}
if (!GetFileSizeEx(fileHandle, &fileSize))
{
fprintf(stderr, "GetFileSizeEx failed with error %lu.\n", GetLastError());
CloseHandle(fileHandle);
fileHandle = nullptr;
return false;
}
fileMappingHandle = CreateFileMappingW(fileHandle, nullptr, PAGE_READONLY, 0, 0, nullptr);
if (fileMappingHandle == nullptr)
{
fprintf(stderr, "CreateFileMappingW failed with error %lu.\n", GetLastError());
CloseHandle(fileHandle);
fileHandle = nullptr;
return false;
}
fileView = MapViewOfFile(fileMappingHandle, FILE_MAP_READ, 0, 0, 0);
if (fileView == nullptr)
{
fprintf(stderr, "MapViewOfFile failed with error %lu.\n", GetLastError());
CloseHandle(fileMappingHandle);
CloseHandle(fileHandle);
fileMappingHandle = nullptr;
fileHandle = nullptr;
return false;
}
return true;
#else
fileHandle = ::open(path.c_str(), O_RDONLY);
if (fileHandle == -1)
{
fprintf(stderr, "open for %s failed with error %s.\n", path.c_str(), strerror(errno));
return false;
}
fileSize = lseek(fileHandle, 0, SEEK_END);
if (fileSize == (off_t)(-1))
{
fprintf(stderr, "lseek failed with error %s.\n", strerror(errno));
::close(fileHandle);
fileHandle = -1;
return false;
}
fileView = mmap(nullptr, fileSize, PROT_READ, MAP_PRIVATE, fileHandle, 0);
if (fileView == MAP_FAILED)
{
fprintf(stderr, "mmap failed with error %s.\n", strerror(errno));
::close(fileHandle);
fileHandle = -1;
return false;
}
return true;
#endif
}
void MemoryMappedFile::close()
{
#if defined(_WIN32)
if (fileView != nullptr)
{
UnmapViewOfFile(fileView);
}
if (fileMappingHandle != nullptr)
{
CloseHandle(fileMappingHandle);
}
if (fileHandle != nullptr)
{
CloseHandle(fileHandle);
}
#else
if (fileView != MAP_FAILED)
{
munmap(fileView, fileSize);
}
if (fileHandle != -1)
{
::close(fileHandle);
}
#endif
}
bool MemoryMappedFile::isOpen() const
{
#if defined(_WIN32)
return (fileView != nullptr);
#else
return (fileView != MAP_FAILED);
#endif
}
uint8_t *MemoryMappedFile::data() const
{
return reinterpret_cast<uint8_t *>(fileView);
}
size_t MemoryMappedFile::size() const
{
#if defined(_WIN32)
return fileSize.QuadPart;
#else
return static_cast<size_t>(fileSize);
#endif
}

View file

@ -1,32 +0,0 @@
#pragma once
#include <filesystem>
#if defined(_WIN32)
# include <Windows.h>
#else
# include <sys/mman.h>
#endif
struct MemoryMappedFile {
#if defined(_WIN32)
HANDLE fileHandle = nullptr;
HANDLE fileMappingHandle = nullptr;
LPVOID fileView = nullptr;
LARGE_INTEGER fileSize = {};
#else
int fileHandle = -1;
void *fileView = MAP_FAILED;
off_t fileSize = 0;
#endif
MemoryMappedFile();
MemoryMappedFile(const std::filesystem::path &path);
MemoryMappedFile(MemoryMappedFile &&other);
~MemoryMappedFile();
bool open(const std::filesystem::path &path);
void close();
bool isOpen() const;
uint8_t *data() const;
size_t size() const;
};

View file

@ -16,7 +16,7 @@
#include "virtual_file_system.h"
#include "memory_mapped_file.h"
#include <memory_mapped_file.h>
enum class XContentVolumeType
{

View file

@ -1,693 +0,0 @@
// Referenced from: https://github.com/xenia-canary/xenia-canary/blob/canary_experimental/src/xenia/cpu/xex_module.cc
/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2023 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#include "xex_patcher.h"
#include <bit>
#include <cassert>
#include <aes.hpp>
#include <lzx.h>
#include <mspack.h>
#include <TinySHA1.hpp>
#include "memory_mapped_file.h"
enum Xex2ModuleFlags
{
XEX_MODULE_MODULE_PATCH = 0x10,
XEX_MODULE_PATCH_FULL = 0x20,
XEX_MODULE_PATCH_DELTA = 0x40,
};
enum Xex2HeaderKeys
{
XEX_HEADER_FILE_FORMAT_INFO = 0x3FF,
XEX_HEADER_DELTA_PATCH_DESCRIPTOR = 0x5FF,
};
enum Xex2EncryptionType
{
XEX_ENCRYPTION_NONE = 0,
XEX_ENCRYPTION_NORMAL = 1,
};
enum Xex2CompressionType
{
XEX_COMPRESSION_NONE = 0,
XEX_COMPRESSION_BASIC = 1,
XEX_COMPRESSION_NORMAL = 2,
XEX_COMPRESSION_DELTA = 3,
};
enum Xex2SectionType
{
XEX_SECTION_CODE = 1,
XEX_SECTION_DATA = 2,
XEX_SECTION_READONLY_DATA = 3,
};
struct Xex2OptHeader
{
be<uint32_t> key;
union
{
be<uint32_t> value;
be<uint32_t> offset;
};
};
struct Xex2Header
{
be<uint32_t> magic;
be<uint32_t> moduleFlags;
be<uint32_t> headerSize;
be<uint32_t> reserved;
be<uint32_t> securityOffset;
be<uint32_t> headerCount;
Xex2OptHeader headers[1];
};
struct Xex2PageDescriptor
{
union
{
// Must be endian-swapped before reading the bitfield.
uint32_t beValue;
struct
{
uint32_t info : 4;
uint32_t pageCount : 28;
};
};
char dataDigest[0x14];
};
struct Xex2SecurityInfo
{
be<uint32_t> headerSize;
be<uint32_t> imageSize;
char rsaSignature[0x100];
be<uint32_t> unknown;
be<uint32_t> imageFlags;
be<uint32_t> loadAddress;
char sectionDigest[0x14];
be<uint32_t> importTableCount;
char importTableDigest[0x14];
char xgd2MediaId[0x10];
char aesKey[0x10];
be<uint32_t> exportTable;
char headerDigest[0x14];
be<uint32_t> region;
be<uint32_t> allowedMediaTypes;
be<uint32_t> pageDescriptorCount;
Xex2PageDescriptor pageDescriptors[1];
};
struct Xex2DeltaPatch
{
be<uint32_t> oldAddress;
be<uint32_t> newAddress;
be<uint16_t> uncompressedLength;
be<uint16_t> compressedLength;
char patchData[1];
};
struct Xex2OptDeltaPatchDescriptor
{
be<uint32_t> size;
be<uint32_t> targetVersionValue;
be<uint32_t> sourceVersionValue;
uint8_t digestSource[0x14];
uint8_t imageKeySource[0x10];
be<uint32_t> sizeOfTargetHeaders;
be<uint32_t> deltaHeadersSourceOffset;
be<uint32_t> deltaHeadersSourceSize;
be<uint32_t> deltaHeadersTargetOffset;
be<uint32_t> deltaImageSourceOffset;
be<uint32_t> deltaImageSourceSize;
be<uint32_t> deltaImageTargetOffset;
Xex2DeltaPatch info;
};
struct Xex2FileBasicCompressionBlock
{
be<uint32_t> dataSize;
be<uint32_t> zeroSize;
};
struct Xex2FileBasicCompressionInfo
{
Xex2FileBasicCompressionBlock firstBlock;
};
struct Xex2CompressedBlockInfo
{
be<uint32_t> blockSize;
uint8_t blockHash[20];
};
struct Xex2FileNormalCompressionInfo
{
be<uint32_t> windowSize;
Xex2CompressedBlockInfo firstBlock;
};
struct Xex2OptFileFormatInfo
{
be<uint32_t> infoSize;
be<uint16_t> encryptionType;
be<uint16_t> compressionType;
union
{
Xex2FileBasicCompressionInfo basic;
Xex2FileNormalCompressionInfo normal;
} compressionInfo;
};
static const void *getOptHeaderPtr(std::span<const uint8_t> moduleBytes, uint32_t headerKey)
{
if ((headerKey & 0xFF) == 0)
{
assert(false && "Wrong type of method for this key. Expected return value is a number.");
return nullptr;
}
const Xex2Header *xex2Header = (const Xex2Header *)(moduleBytes.data());
for (uint32_t i = 0; i < xex2Header->headerCount; i++)
{
const Xex2OptHeader &optHeader = xex2Header->headers[i];
if (optHeader.key == headerKey)
{
if ((headerKey & 0xFF) == 1)
{
return &optHeader.value;
}
else
{
return &moduleBytes.data()[optHeader.offset];
}
}
}
return nullptr;
}
struct mspack_memory_file
{
mspack_system sys;
void *buffer;
size_t bufferSize;
size_t offset;
};
static mspack_memory_file *mspack_memory_open(mspack_system *sys, void *buffer, size_t bufferSize)
{
assert(bufferSize < INT_MAX);
if (bufferSize >= INT_MAX)
{
return nullptr;
}
mspack_memory_file *memoryFile = (mspack_memory_file *)(std::calloc(1, sizeof(mspack_memory_file)));
if (memoryFile == nullptr)
{
return memoryFile;
}
memoryFile->buffer = buffer;
memoryFile->bufferSize = bufferSize;
memoryFile->offset = 0;
return memoryFile;
}
static void mspack_memory_close(mspack_memory_file *file)
{
std::free(file);
}
static int mspack_memory_read(mspack_file *file, void *buffer, int chars)
{
mspack_memory_file *memoryFile = (mspack_memory_file *)(file);
const size_t remaining = memoryFile->bufferSize - memoryFile->offset;
const size_t total = std::min(size_t(chars), remaining);
std::memcpy(buffer, (uint8_t *)(memoryFile->buffer) + memoryFile->offset, total);
memoryFile->offset += total;
return int(total);
}
static int mspack_memory_write(mspack_file *file, void *buffer, int chars)
{
mspack_memory_file *memoryFile = (mspack_memory_file *)(file);
const size_t remaining = memoryFile->bufferSize - memoryFile->offset;
const size_t total = std::min(size_t(chars), remaining);
std::memcpy((uint8_t *)(memoryFile->buffer) + memoryFile->offset, buffer, total);
memoryFile->offset += total;
return int(total);
}
static void *mspack_memory_alloc(mspack_system *sys, size_t chars)
{
return std::calloc(chars, 1);
}
static void mspack_memory_free(void *ptr)
{
std::free(ptr);
}
static void mspack_memory_copy(void *src, void *dest, size_t chars)
{
std::memcpy(dest, src, chars);
}
static mspack_system *mspack_memory_sys_create()
{
auto sys = (mspack_system *)(std::calloc(1, sizeof(mspack_system)));
if (!sys)
{
return nullptr;
}
sys->read = mspack_memory_read;
sys->write = mspack_memory_write;
sys->alloc = mspack_memory_alloc;
sys->free = mspack_memory_free;
sys->copy = mspack_memory_copy;
return sys;
}
static void mspack_memory_sys_destroy(struct mspack_system *sys)
{
free(sys);
}
#if defined(_WIN32)
inline bool bitScanForward(uint32_t v, uint32_t *outFirstSetIndex)
{
return _BitScanForward((unsigned long *)(outFirstSetIndex), v) != 0;
}
inline bool bitScanForward(uint64_t v, uint32_t *outFirstSetIndex)
{
return _BitScanForward64((unsigned long *)(outFirstSetIndex), v) != 0;
}
#else
inline bool bitScanForward(uint32_t v, uint32_t *outFirstSetIndex)
{
int i = ffs(v);
*outFirstSetIndex = i - 1;
return i != 0;
}
inline bool bitScanForward(uint64_t v, uint32_t *outFirstSetIndex)
{
int i = __builtin_ffsll(v);
*outFirstSetIndex = i - 1;
return i != 0;
}
#endif
static int lzxDecompress(const void *lzxData, size_t lzxLength, void *dst, size_t dstLength, uint32_t windowSize, void *windowData, size_t windowDataLength)
{
int resultCode = 1;
uint32_t windowBits;
if (!bitScanForward(windowSize, &windowBits)) {
return resultCode;
}
mspack_system *sys = mspack_memory_sys_create();
mspack_memory_file *lzxSrc = mspack_memory_open(sys, (void *)(lzxData), lzxLength);
mspack_memory_file *lzxDst = mspack_memory_open(sys, dst, dstLength);
lzxd_stream *lzxd = lzxd_init(sys, (mspack_file *)(lzxSrc), (mspack_file *)(lzxDst), windowBits, 0, 0x8000, dstLength, 0);
if (lzxd != nullptr) {
if (windowData != nullptr) {
size_t paddingLength = windowSize - windowDataLength;
std::memset(&lzxd->window[0], 0, paddingLength);
std::memcpy(&lzxd->window[paddingLength], windowData, windowDataLength);
lzxd->ref_data_size = windowSize;
}
resultCode = lzxd_decompress(lzxd, dstLength);
lzxd_free(lzxd);
}
if (lzxSrc) {
mspack_memory_close(lzxSrc);
}
if (lzxDst) {
mspack_memory_close(lzxDst);
}
if (sys) {
mspack_memory_sys_destroy(sys);
}
return resultCode;
}
static int lzxDeltaApplyPatch(const Xex2DeltaPatch *deltaPatch, uint32_t patchLength, uint32_t windowSize, uint8_t *dstData)
{
const void *patchEnd = (const uint8_t *)(deltaPatch) + patchLength;
const Xex2DeltaPatch *curPatch = deltaPatch;
while (patchEnd > curPatch)
{
int patchSize = -4;
if (curPatch->compressedLength == 0 && curPatch->uncompressedLength == 0 && curPatch->newAddress == 0 && curPatch->oldAddress == 0)
{
// End of patch.
break;
}
switch (curPatch->compressedLength)
{
case 0:
// Set the data to zeroes.
std::memset(&dstData[curPatch->newAddress], 0, curPatch->uncompressedLength);
break;
case 1:
// Move the data.
std::memcpy(&dstData[curPatch->newAddress], &dstData[curPatch->oldAddress], curPatch->uncompressedLength);
break;
default:
// Decompress the data into the destination.
patchSize = curPatch->compressedLength - 4;
int result = lzxDecompress(curPatch->patchData, curPatch->compressedLength, &dstData[curPatch->newAddress], curPatch->uncompressedLength, windowSize, &dstData[curPatch->oldAddress], curPatch->uncompressedLength);
if (result != 0)
{
return result;
}
break;
}
curPatch++;
curPatch = (const Xex2DeltaPatch *)((const uint8_t *)(curPatch) + patchSize);
}
return 0;
}
XexPatcher::Result XexPatcher::apply(std::span<const uint8_t> xexBytes, std::span<const uint8_t> patchBytes, std::vector<uint8_t> &outBytes, bool skipData)
{
// Validate headers.
static const char Xex2Magic[] = "XEX2";
const Xex2Header *xexHeader = (const Xex2Header *)(xexBytes.data());
if (memcmp(xexBytes.data(), Xex2Magic, 4) != 0)
{
return Result::XexFileInvalid;
}
const Xex2Header *patchHeader = (const Xex2Header *)(patchBytes.data());
if (memcmp(patchBytes.data(), Xex2Magic, 4) != 0)
{
return Result::PatchFileInvalid;
}
if ((patchHeader->moduleFlags & (XEX_MODULE_MODULE_PATCH | XEX_MODULE_PATCH_DELTA | XEX_MODULE_PATCH_FULL)) == 0)
{
return Result::PatchFileInvalid;
}
// Validate patch.
const Xex2OptDeltaPatchDescriptor *patchDescriptor = (const Xex2OptDeltaPatchDescriptor *)(getOptHeaderPtr(patchBytes, XEX_HEADER_DELTA_PATCH_DESCRIPTOR));
if (patchDescriptor == nullptr)
{
return Result::PatchFileInvalid;
}
const Xex2OptFileFormatInfo *patchFileFormatInfo = (const Xex2OptFileFormatInfo *)(getOptHeaderPtr(patchBytes, XEX_HEADER_FILE_FORMAT_INFO));
if (patchFileFormatInfo == nullptr)
{
return Result::PatchFileInvalid;
}
if (patchFileFormatInfo->compressionType != XEX_COMPRESSION_DELTA)
{
return Result::PatchFileInvalid;
}
if (patchDescriptor->deltaHeadersSourceOffset > xexHeader->headerSize)
{
return Result::PatchIncompatible;
}
if (patchDescriptor->deltaHeadersSourceSize > (xexHeader->headerSize - patchDescriptor->deltaHeadersSourceOffset))
{
return Result::PatchIncompatible;
}
if (patchDescriptor->deltaHeadersTargetOffset > patchDescriptor->sizeOfTargetHeaders)
{
return Result::PatchIncompatible;
}
uint32_t deltaTargetSize = patchDescriptor->sizeOfTargetHeaders - patchDescriptor->deltaHeadersTargetOffset;
if (patchDescriptor->deltaHeadersSourceSize > deltaTargetSize)
{
return Result::PatchIncompatible;
}
// Apply patch.
uint32_t headerTargetSize = patchDescriptor->sizeOfTargetHeaders;
if (headerTargetSize == 0)
{
headerTargetSize = patchDescriptor->deltaHeadersTargetOffset + patchDescriptor->deltaHeadersSourceSize;
}
// Create the bytes for the new XEX header. Copy over the existing data.
uint32_t newXexHeaderSize = std::max(headerTargetSize, xexHeader->headerSize.get());
outBytes.resize(newXexHeaderSize);
memset(outBytes.data(), 0, newXexHeaderSize);
memcpy(outBytes.data(), xexBytes.data(), headerTargetSize);
Xex2Header *newXexHeader = (Xex2Header *)(outBytes.data());
if (patchDescriptor->deltaHeadersSourceOffset > 0)
{
memcpy(&outBytes[patchDescriptor->deltaHeadersTargetOffset], &outBytes[patchDescriptor->deltaHeadersSourceOffset], patchDescriptor->deltaHeadersSourceSize);
}
int resultCode = lzxDeltaApplyPatch(&patchDescriptor->info, patchDescriptor->size, patchFileFormatInfo->compressionInfo.normal.windowSize, outBytes.data());
if (resultCode != 0)
{
return Result::PatchFailed;
}
// Make the header the specified size by the patch.
outBytes.resize(headerTargetSize);
newXexHeader = (Xex2Header *)(outBytes.data());
// Copy the rest of the data.
const Xex2SecurityInfo *newSecurityInfo = (const Xex2SecurityInfo *)(&outBytes[newXexHeader->securityOffset]);
outBytes.resize(outBytes.size() + newSecurityInfo->imageSize);
memset(&outBytes[headerTargetSize], 0, outBytes.size() - headerTargetSize);
memcpy(&outBytes[headerTargetSize], &xexBytes[xexHeader->headerSize], xexBytes.size() - xexHeader->headerSize);
newXexHeader = (Xex2Header *)(outBytes.data());
newSecurityInfo = (const Xex2SecurityInfo *)(&outBytes[newXexHeader->securityOffset]);
// Decrypt the keys and validate that the patch is compatible with the base file.
static const uint32_t KeySize = 16;
static const uint8_t Xex2RetailKey[16] = { 0x20, 0xB1, 0x85, 0xA5, 0x9D, 0x28, 0xFD, 0xC3, 0x40, 0x58, 0x3F, 0xBB, 0x08, 0x96, 0xBF, 0x91 };
static const uint8_t AESBlankIV[AES_BLOCKLEN] = {};
const Xex2SecurityInfo *originalSecurityInfo = (const Xex2SecurityInfo *)(&xexBytes[xexHeader->securityOffset]);
const Xex2SecurityInfo *patchSecurityInfo = (const Xex2SecurityInfo *)(&patchBytes[patchHeader->securityOffset]);
uint8_t decryptedOriginalKey[KeySize];
uint8_t decryptedNewKey[KeySize];
uint8_t decryptedPatchKey[KeySize];
uint8_t decrpytedImageKeySource[KeySize];
memcpy(decryptedOriginalKey, originalSecurityInfo->aesKey, KeySize);
memcpy(decryptedNewKey, newSecurityInfo->aesKey, KeySize);
memcpy(decryptedPatchKey, patchSecurityInfo->aesKey, KeySize);
memcpy(decrpytedImageKeySource, patchDescriptor->imageKeySource, KeySize);
AES_ctx aesContext;
AES_init_ctx_iv(&aesContext, Xex2RetailKey, AESBlankIV);
AES_CBC_decrypt_buffer(&aesContext, decryptedOriginalKey, KeySize);
AES_ctx_set_iv(&aesContext, AESBlankIV);
AES_CBC_decrypt_buffer(&aesContext, decryptedNewKey, KeySize);
AES_init_ctx_iv(&aesContext, decryptedNewKey, AESBlankIV);
AES_CBC_decrypt_buffer(&aesContext, decryptedPatchKey, KeySize);
AES_ctx_set_iv(&aesContext, AESBlankIV);
AES_CBC_decrypt_buffer(&aesContext, decrpytedImageKeySource, KeySize);
// Validate the patch's key matches the one from the original XEX.
if (memcmp(decrpytedImageKeySource, decryptedOriginalKey, KeySize) != 0)
{
return Result::PatchIncompatible;
}
// Don't process the rest of the patch.
if (skipData)
{
return Result::Success;
}
// Decrypt base XEX if necessary.
const Xex2OptFileFormatInfo *fileFormatInfo = (const Xex2OptFileFormatInfo *)(getOptHeaderPtr(xexBytes, XEX_HEADER_FILE_FORMAT_INFO));
if (fileFormatInfo == nullptr)
{
return Result::XexFileInvalid;
}
if (fileFormatInfo->encryptionType == XEX_ENCRYPTION_NORMAL)
{
AES_init_ctx_iv(&aesContext, decryptedOriginalKey, AESBlankIV);
AES_CBC_decrypt_buffer(&aesContext, &outBytes[headerTargetSize], xexBytes.size() - xexHeader->headerSize);
}
else if (fileFormatInfo->encryptionType != XEX_ENCRYPTION_NONE)
{
return Result::XexFileInvalid;
}
// Decompress base XEX if necessary.
if (fileFormatInfo->compressionType == XEX_COMPRESSION_BASIC)
{
const Xex2FileBasicCompressionBlock *blocks = &fileFormatInfo->compressionInfo.basic.firstBlock;
int32_t numBlocks = (fileFormatInfo->infoSize / sizeof(Xex2FileBasicCompressionBlock)) - 1;
int32_t baseCompressedSize = 0;
int32_t baseImageSize = 0;
for (int32_t i = 0; i < numBlocks; i++) {
baseCompressedSize += blocks[i].dataSize;
baseImageSize += blocks[i].dataSize + blocks[i].zeroSize;
}
if (outBytes.size() < (headerTargetSize + baseImageSize))
{
return Result::XexFileInvalid;
}
// Reverse iteration allows to perform this decompression in place.
uint8_t *srcDataCursor = outBytes.data() + headerTargetSize + baseCompressedSize;
uint8_t *outDataCursor = outBytes.data() + headerTargetSize + baseImageSize;
for (int32_t i = numBlocks - 1; i >= 0; i--)
{
outDataCursor -= blocks[i].zeroSize;
memset(outDataCursor, 0, blocks[i].zeroSize);
outDataCursor -= blocks[i].dataSize;
srcDataCursor -= blocks[i].dataSize;
memmove(outDataCursor, srcDataCursor, blocks[i].dataSize);
}
}
else if (fileFormatInfo->compressionType == XEX_COMPRESSION_NORMAL || fileFormatInfo->compressionType == XEX_COMPRESSION_DELTA)
{
return Result::XexFileUnsupported;
}
else if (fileFormatInfo->compressionType != XEX_COMPRESSION_NONE)
{
return Result::XexFileInvalid;
}
Xex2OptFileFormatInfo *newFileFormatInfo = (Xex2OptFileFormatInfo *)(getOptHeaderPtr(outBytes, XEX_HEADER_FILE_FORMAT_INFO));
if (newFileFormatInfo == nullptr)
{
return Result::PatchFailed;
}
// Update the header to indicate no encryption or compression is used.
newFileFormatInfo->encryptionType = XEX_ENCRYPTION_NONE;
newFileFormatInfo->compressionType = XEX_COMPRESSION_NONE;
// Copy and decrypt patch data if necessary.
std::vector<uint8_t> patchData;
patchData.resize(patchBytes.size() - patchHeader->headerSize);
memcpy(patchData.data(), &patchBytes[patchHeader->headerSize], patchData.size());
if (patchFileFormatInfo->encryptionType == XEX_ENCRYPTION_NORMAL)
{
AES_init_ctx_iv(&aesContext, decryptedPatchKey, AESBlankIV);
AES_CBC_decrypt_buffer(&aesContext, patchData.data(), patchData.size());
}
else if (patchFileFormatInfo->encryptionType != XEX_ENCRYPTION_NONE)
{
return Result::PatchFileInvalid;
}
const Xex2CompressedBlockInfo *currentBlock = &patchFileFormatInfo->compressionInfo.normal.firstBlock;
uint8_t *outExe = &outBytes[newXexHeader->headerSize];
if (patchDescriptor->deltaImageSourceOffset > 0)
{
memcpy(&outExe[patchDescriptor->deltaImageTargetOffset], &outExe[patchDescriptor->deltaImageSourceOffset], patchDescriptor->deltaImageSourceSize);
}
static const uint32_t DigestSize = 20;
uint8_t sha1Digest[DigestSize];
sha1::SHA1 sha1Context;
uint8_t *patchDataCursor = patchData.data();
while (currentBlock->blockSize > 0)
{
const Xex2CompressedBlockInfo *nextBlock = (const Xex2CompressedBlockInfo *)(patchDataCursor);
// Hash and validate the block.
sha1Context.reset();
sha1Context.processBytes(patchDataCursor, currentBlock->blockSize);
sha1Context.finalize(sha1Digest);
if (memcmp(sha1Digest, currentBlock->blockHash, DigestSize) != 0)
{
return Result::PatchFailed;
}
patchDataCursor += 24;
// Apply the block's patch data.
uint32_t blockDataSize = currentBlock->blockSize - 24;
if (lzxDeltaApplyPatch((const Xex2DeltaPatch *)(patchDataCursor), blockDataSize, patchFileFormatInfo->compressionInfo.normal.windowSize, outExe) != 0)
{
return Result::PatchFailed;
}
patchDataCursor += blockDataSize;
currentBlock = nextBlock;
}
return Result::Success;
}
XexPatcher::Result XexPatcher::apply(const std::filesystem::path &baseXexPath, const std::filesystem::path &patchXexPath, const std::filesystem::path &newXexPath)
{
MemoryMappedFile baseXexFile(baseXexPath);
MemoryMappedFile patchFile(patchXexPath);
if (!baseXexFile.isOpen() || !patchFile.isOpen())
{
return Result::FileOpenFailed;
}
std::vector<uint8_t> newXexBytes;
Result result = apply({ baseXexFile.data(), baseXexFile.size() }, { patchFile.data(), patchFile.size() }, newXexBytes, false);
if (result != Result::Success)
{
return result;
}
std::ofstream newXexFile(newXexPath, std::ios::binary);
if (!newXexFile.is_open())
{
return Result::FileOpenFailed;
}
newXexFile.write((const char *)(newXexBytes.data()), newXexBytes.size());
newXexFile.close();
if (newXexFile.bad())
{
std::filesystem::remove(newXexPath);
return Result::FileWriteFailed;
}
return Result::Success;
}

View file

@ -1,35 +0,0 @@
// Referenced from: https://github.com/xenia-canary/xenia-canary/blob/canary_experimental/src/xenia/cpu/xex_module.cc
/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2023 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#pragma once
#include <cstdint>
#include <filesystem>
#include <span>
#include <vector>
struct XexPatcher
{
enum class Result {
Success,
FileOpenFailed,
FileWriteFailed,
XexFileUnsupported,
XexFileInvalid,
PatchFileInvalid,
PatchIncompatible,
PatchFailed,
PatchUnsupported
};
static Result apply(std::span<const uint8_t> xexBytes, std::span<const uint8_t> patchBytes, std::vector<uint8_t> &outBytes, bool skipData);
static Result apply(const std::filesystem::path &baseXexPath, const std::filesystem::path &patchXexPath, const std::filesystem::path &newXexPath);
};

View file

@ -106,33 +106,33 @@ uint32_t LdrLoadModule(const std::filesystem::path &path)
return 0;
}
auto* xex = reinterpret_cast<XEX_HEADER*>(loadResult.data());
auto security = reinterpret_cast<XEX2_SECURITY_INFO*>((char*)xex + xex->AddressOfSecurityInfo);
auto format = Xex2FindOptionalHeader<XEX_FILE_FORMAT_INFO>(xex, XEX_HEADER_FILE_FORMAT_INFO);
auto entry = *Xex2FindOptionalHeader<uint32_t>(xex, XEX_HEADER_ENTRY_POINT);
auto* header = reinterpret_cast<const Xex2Header*>(loadResult.data());
auto* security = reinterpret_cast<const Xex2SecurityInfo*>(loadResult.data() + header->securityOffset);
const auto* fileFormatInfo = reinterpret_cast<const Xex2OptFileFormatInfo*>(getOptHeaderPtr(loadResult.data(), XEX_HEADER_FILE_FORMAT_INFO));
auto entry = *reinterpret_cast<const uint32_t*>(getOptHeaderPtr(loadResult.data(), XEX_HEADER_ENTRY_POINT));
ByteSwapInplace(entry);
auto srcData = (char *)xex + xex->SizeOfHeader;
auto destData = (char *)g_memory.Translate(security->ImageBase);
if (format->CompressionType == 0)
auto srcData = loadResult.data() + header->headerSize;
auto destData = reinterpret_cast<uint8_t*>(g_memory.Translate(security->loadAddress));
if (fileFormatInfo->compressionType == XEX_COMPRESSION_NONE)
{
memcpy(destData, srcData, security->SizeOfImage);
memcpy(destData, srcData, security->imageSize);
}
else if (format->CompressionType == 1)
else if (fileFormatInfo->compressionType == XEX_COMPRESSION_BASIC)
{
auto numBlocks = (format->SizeOfHeader / sizeof(XEX_BASIC_FILE_COMPRESSION_INFO)) - 1;
auto blocks = reinterpret_cast<const XEX_BASIC_FILE_COMPRESSION_INFO*>(format + 1);
auto* blocks = reinterpret_cast<const Xex2FileBasicCompressionBlock*>(fileFormatInfo + 1);
const size_t numBlocks = (fileFormatInfo->infoSize / sizeof(Xex2FileBasicCompressionInfo)) - 1;
for (size_t i = 0; i < numBlocks; i++)
{
memcpy(destData, srcData, blocks[i].SizeOfData);
memcpy(destData, srcData, blocks[i].dataSize);
srcData += blocks[i].SizeOfData;
destData += blocks[i].SizeOfData;
memset(destData, 0, blocks[i].SizeOfPadding);
srcData += blocks[i].dataSize;
destData += blocks[i].dataSize;
destData += blocks[i].SizeOfPadding;
memset(destData, 0, blocks[i].zeroSize);
destData += blocks[i].zeroSize;
}
}
else
@ -140,9 +140,9 @@ uint32_t LdrLoadModule(const std::filesystem::path &path)
assert(false && "Unknown compression type.");
}
auto res = Xex2FindOptionalHeader<XEX_RESOURCE_INFO>(xex, XEX_HEADER_RESOURCE_INFO);
auto res = reinterpret_cast<const Xex2ResourceInfo*>(getOptHeaderPtr(loadResult.data(), XEX_HEADER_RESOURCE_INFO));
g_xdbfWrapper = XDBFWrapper((uint8_t*)g_memory.Translate(res->Offset.get()), res->SizeOfData);
g_xdbfWrapper = XDBFWrapper((uint8_t*)g_memory.Translate(res->offset.get()), res->sizeOfData);
return entry;
}

View file

@ -28,7 +28,10 @@ endforeach()
add_custom_command(
OUTPUT ${UNLEASHED_RECOMP_PPC_RECOMPILED_SOURCES}
COMMAND $<TARGET_FILE:XenonRecomp>
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/private/default.xex" "${CMAKE_CURRENT_SOURCE_DIR}/config/SWA.toml"
DEPENDS
"${CMAKE_CURRENT_SOURCE_DIR}/private/default.xex"
"${CMAKE_CURRENT_SOURCE_DIR}/private/default.xexp"
"${CMAKE_CURRENT_SOURCE_DIR}/config/SWA.toml"
)
set(XENOS_RECOMP_ROOT "${UNLEASHED_RECOMP_TOOLS_ROOT}/XenosRecomp/XenosRecomp")

View file

@ -1,5 +1,7 @@
[main]
file_path = "../private/default.xex"
patch_file_path = "../private/default.xexp"
patched_file_path = "../private/default_patched.xex"
out_directory_path = "../ppc"
switch_table_file_path = "SWA_switch_tables.toml"

View file

@ -1,223 +0,0 @@
/*
*
* TinySHA1 - a header only implementation of the SHA1 algorithm in C++. Based
* on the implementation in boost::uuid::details.
*
* SHA1 Wikipedia Page: http://en.wikipedia.org/wiki/SHA-1
*
* Copyright (c) 2012-22 SAURAV MOHAPATRA <mohaps@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* Taken from https://github.com/mohaps/TinySHA1
* Modified for use by Xenia
*/
#ifndef _TINY_SHA1_HPP_
#define _TINY_SHA1_HPP_
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <stdint.h>
namespace sha1 {
class SHA1 {
public:
typedef uint32_t digest32_t[5];
typedef uint8_t digest8_t[20];
inline static uint32_t LeftRotate(uint32_t value, size_t count) {
return (value << count) ^ (value >> (32 - count));
}
SHA1() { reset(); }
virtual ~SHA1() {}
SHA1(const SHA1& s) { *this = s; }
const SHA1& operator=(const SHA1& s) {
memcpy(m_digest, s.m_digest, 5 * sizeof(uint32_t));
memcpy(m_block, s.m_block, 64);
m_blockByteIndex = s.m_blockByteIndex;
m_byteCount = s.m_byteCount;
return *this;
}
SHA1& init(const uint32_t digest[5], const uint8_t block[64],
uint32_t count) {
std::memcpy(m_digest, digest, 20);
std::memcpy(m_block, block, count % 64);
m_byteCount = count;
m_blockByteIndex = count % 64;
return *this;
}
const uint32_t* getDigest() const { return m_digest; }
const uint8_t* getBlock() const { return m_block; }
size_t getBlockByteIndex() const { return m_blockByteIndex; }
size_t getByteCount() const { return m_byteCount; }
SHA1& reset() {
m_digest[0] = 0x67452301;
m_digest[1] = 0xEFCDAB89;
m_digest[2] = 0x98BADCFE;
m_digest[3] = 0x10325476;
m_digest[4] = 0xC3D2E1F0;
m_blockByteIndex = 0;
m_byteCount = 0;
return *this;
}
SHA1& processByte(uint8_t octet) {
this->m_block[this->m_blockByteIndex++] = octet;
++this->m_byteCount;
if (m_blockByteIndex == 64) {
this->m_blockByteIndex = 0;
processBlock();
}
return *this;
}
SHA1& processBlock(const void* const start, const void* const end) {
const uint8_t* begin = static_cast<const uint8_t*>(start);
const uint8_t* finish = static_cast<const uint8_t*>(end);
while (begin != finish) {
processByte(*begin);
begin++;
}
return *this;
}
SHA1& processBytes(const void* const data, size_t len) {
const uint8_t* block = static_cast<const uint8_t*>(data);
processBlock(block, block + len);
return *this;
}
const uint32_t* finalize(digest32_t digest) {
size_t bitCount = this->m_byteCount * 8;
processByte(0x80);
if (this->m_blockByteIndex > 56) {
while (m_blockByteIndex != 0) {
processByte(0);
}
while (m_blockByteIndex < 56) {
processByte(0);
}
} else {
while (m_blockByteIndex < 56) {
processByte(0);
}
}
processByte(0);
processByte(0);
processByte(0);
processByte(0);
processByte(static_cast<unsigned char>((bitCount >> 24) & 0xFF));
processByte(static_cast<unsigned char>((bitCount >> 16) & 0xFF));
processByte(static_cast<unsigned char>((bitCount >> 8) & 0xFF));
processByte(static_cast<unsigned char>((bitCount)&0xFF));
memcpy(digest, m_digest, 5 * sizeof(uint32_t));
return digest;
}
const uint8_t* finalize(digest8_t digest) {
digest32_t d32;
finalize(d32);
size_t di = 0;
digest[di++] = ((d32[0] >> 24) & 0xFF);
digest[di++] = ((d32[0] >> 16) & 0xFF);
digest[di++] = ((d32[0] >> 8) & 0xFF);
digest[di++] = ((d32[0]) & 0xFF);
digest[di++] = ((d32[1] >> 24) & 0xFF);
digest[di++] = ((d32[1] >> 16) & 0xFF);
digest[di++] = ((d32[1] >> 8) & 0xFF);
digest[di++] = ((d32[1]) & 0xFF);
digest[di++] = ((d32[2] >> 24) & 0xFF);
digest[di++] = ((d32[2] >> 16) & 0xFF);
digest[di++] = ((d32[2] >> 8) & 0xFF);
digest[di++] = ((d32[2]) & 0xFF);
digest[di++] = ((d32[3] >> 24) & 0xFF);
digest[di++] = ((d32[3] >> 16) & 0xFF);
digest[di++] = ((d32[3] >> 8) & 0xFF);
digest[di++] = ((d32[3]) & 0xFF);
digest[di++] = ((d32[4] >> 24) & 0xFF);
digest[di++] = ((d32[4] >> 16) & 0xFF);
digest[di++] = ((d32[4] >> 8) & 0xFF);
digest[di++] = ((d32[4]) & 0xFF);
return digest;
}
protected:
void processBlock() {
uint32_t w[80];
for (size_t i = 0; i < 16; i++) {
w[i] = (m_block[i * 4 + 0] << 24);
w[i] |= (m_block[i * 4 + 1] << 16);
w[i] |= (m_block[i * 4 + 2] << 8);
w[i] |= (m_block[i * 4 + 3]);
}
for (size_t i = 16; i < 80; i++) {
w[i] = LeftRotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]), 1);
}
uint32_t a = m_digest[0];
uint32_t b = m_digest[1];
uint32_t c = m_digest[2];
uint32_t d = m_digest[3];
uint32_t e = m_digest[4];
for (std::size_t i = 0; i < 80; ++i) {
uint32_t f = 0;
uint32_t k = 0;
if (i < 20) {
f = (b & c) | (~b & d);
k = 0x5A827999;
} else if (i < 40) {
f = b ^ c ^ d;
k = 0x6ED9EBA1;
} else if (i < 60) {
f = (b & c) | (b & d) | (c & d);
k = 0x8F1BBCDC;
} else {
f = b ^ c ^ d;
k = 0xCA62C1D6;
}
uint32_t temp = LeftRotate(a, 5) + f + e + k + w[i];
e = d;
d = c;
c = LeftRotate(b, 30);
b = a;
a = temp;
}
m_digest[0] += a;
m_digest[1] += b;
m_digest[2] += c;
m_digest[3] += d;
m_digest[4] += e;
}
private:
digest32_t m_digest;
uint8_t m_block[64];
size_t m_blockByteIndex;
size_t m_byteCount;
};
}
#endif

@ -1 +0,0 @@
Subproject commit 305907723a4e7ab2018e58040059ffb5e77db837

@ -1 +0,0 @@
Subproject commit 23856752fbd139da0b8ca6e471a13d5bcc99a08d

@ -1 +1 @@
Subproject commit 0fc545a6e25275d3a4c79685d32d2eb22fe98e98
Subproject commit cd6fcb33bdcaff37c8c9d2083c7951e1d73ae9da