#include "framework.h" #include "Specific\trmath.h" #include #include "Specific\prng.h" using namespace TEN::Math::Random; short ANGLE(float angle) { return angle * 65536.0f / 360.0f; } short FROM_DEGREES(float angle) { return angle * 65536.0f / 360.0f; } short FROM_RAD(float angle) { return angle / RADIAN * 65536.0f / 360.0f; } float TO_DEGREES(short angle) { return lround(angle * 360.0f / 65536.0f); } float TO_RAD(short angle) { return angle * 360.0f / 65536.0f * RADIAN; } const float lerp(float v0, float v1, float t) { return (1 - t) * v0 + t * v1; } const Vector3 getRandomVector() { Vector3 v = {GenerateFloat(-1,1),GenerateFloat(-1,1),GenerateFloat(-1,1)}; v.Normalize(); return v; } const Vector3 getRandomVectorInCone(const Vector3& direction, const float angleDegrees) { float x = GenerateFloat(-angleDegrees, angleDegrees) * RADIAN; float y = GenerateFloat(-angleDegrees, angleDegrees) * RADIAN; float z = GenerateFloat(-angleDegrees, angleDegrees) * RADIAN; Matrix m = Matrix::CreateRotationX(x)* Matrix::CreateRotationY(y) * Matrix::CreateRotationZ(z); Vector3 result = direction.TransformNormal(direction, m); result.Normalize(); return result; } float phd_sin(short a) { return sin(TO_RAD(a)); } float phd_cos(short a) { return cos(TO_RAD(a)); } int mGetAngle(int x1, int y1, int x2, int y2) { return (65536 - phd_atan(x2 - x1, y2 - y1)) % 65536; } int phd_atan(int x, int y) { return FROM_RAD(atan2(y, x)); } void phd_GetVectorAngles(int x, int y, int z, short* angles) { const auto angle = atan2(x, z); auto vector = Vector3(x, y, z); const auto matrix = Matrix::CreateRotationY(-angle); Vector3::Transform(vector, matrix, vector); angles[0] = FROM_RAD(angle); angles[1] = FROM_RAD(-atan2(y, vector.z)); } int phd_Distance(PHD_3DPOS* first, PHD_3DPOS* second) { auto v1 = Vector3(first->xPos, first->yPos, first->zPos); auto v2 = Vector3(second->xPos, second->yPos, second->zPos); return (int)round(Vector3::Distance(v1, v2)); } void phd_RotBoundingBoxNoPersp(PHD_3DPOS* pos, BOUNDING_BOX* bounds, BOUNDING_BOX* tbounds) { Matrix world = Matrix::CreateFromYawPitchRoll( TO_RAD(pos->yRot), TO_RAD(pos->xRot), TO_RAD(pos->zRot) ); Vector3 bMin = Vector3(bounds->X1, bounds->Y1, bounds->Z1); Vector3 bMax = Vector3(bounds->X2, bounds->Y2, bounds->Z2); bMin = Vector3::Transform(bMin, world); bMax = Vector3::Transform(bMax, world); tbounds->X1 = bMin.x; tbounds->X2 = bMax.x; tbounds->Y1 = bMin.y; tbounds->Y2 = bMax.y; tbounds->Z1 = bMin.z; tbounds->Z2 = bMax.z; } void InterpolateAngle(short angle, short* rotation, short* outAngle, int shift) { int deltaAngle = angle - *rotation; if (deltaAngle < -32768) deltaAngle += 65536; else if (deltaAngle > 32768) deltaAngle -= 65536; if (outAngle) *outAngle = static_cast(deltaAngle); *rotation += static_cast(deltaAngle >> shift); } void GetMatrixFromTrAngle(Matrix* matrix, short* frameptr, int index) { short* ptr = &frameptr[0]; ptr += 9; for (int i = 0; i < index; i++) { ptr += ((*ptr & 0xc000) == 0 ? 2 : 1); } int rot0 = *ptr++; int frameMode = (rot0 & 0xc000); int rot1; int rotX; int rotY; int rotZ; switch (frameMode) { case 0: rot1 = *ptr++; rotX = ((rot0 & 0x3ff0) >> 4); rotY = (((rot1 & 0xfc00) >> 10) | ((rot0 & 0xf) << 6) & 0x3ff); rotZ = ((rot1) & 0x3ff); *matrix = Matrix::CreateFromYawPitchRoll(rotY * (360.0f / 1024.0f) * RADIAN, rotX * (360.0f / 1024.0f) * RADIAN, rotZ * (360.0f / 1024.0f) * RADIAN); break; case 0x4000: *matrix = Matrix::CreateRotationX((rot0 & 0xfff) * (360.0f / 4096.0f) * RADIAN); break; case 0x8000: *matrix = Matrix::CreateRotationY((rot0 & 0xfff) * (360.0f / 4096.0f) * RADIAN); break; case 0xc000: *matrix = Matrix::CreateRotationZ((rot0 & 0xfff) * (360.0f / 4096.0f) * RADIAN); break; } } BoundingOrientedBox TO_DX_BBOX(PHD_3DPOS pos, BOUNDING_BOX* box) { Vector3 boxCentre = Vector3((box->X2 + box->X1) / 2.0f, (box->Y2 + box->Y1) / 2.0f, (box->Z2 + box->Z1) / 2.0f); Vector3 boxExtent = Vector3((box->X2 - box->X1) / 2.0f, (box->Y2 - box->Y1) / 2.0f, (box->Z2 - box->Z1) / 2.0f); Quaternion rotation = Quaternion::CreateFromYawPitchRoll(TO_RAD(pos.yRot), TO_RAD(pos.xRot), TO_RAD(pos.zRot)); BoundingOrientedBox result; BoundingOrientedBox(boxCentre, boxExtent, Vector4::UnitY).Transform(result, 1, rotation, Vector3(pos.xPos, pos.yPos, pos.zPos)); return result; } __int64 FP_Mul(__int64 a, __int64 b) { return (int)((((__int64)a * (__int64)b)) >> FP_SHIFT); } __int64 FP_Div(__int64 a, __int64 b) { return (int)(((a) / (b >> 8)) << 8); } void FP_VectorMul(PHD_VECTOR* v, int scale, PHD_VECTOR* result) { result->x = FP_FromFixed(v->x * scale); result->y = FP_FromFixed(v->y * scale); result->z = FP_FromFixed(v->z * scale); } int FP_DotProduct(PHD_VECTOR* a, PHD_VECTOR* b) { return ((a->x * b->x) + (a->y * b->y) + (a->z * b->z)) >> W2V_SHIFT; } void FP_CrossProduct(PHD_VECTOR* a, PHD_VECTOR* b, PHD_VECTOR* result) { result->x = ((a->y * b->z) - (a->z * b->y)) >> W2V_SHIFT; result->y = ((a->z * b->x) - (a->x * b->z)) >> W2V_SHIFT; result->z = ((a->x * b->y) - (a->y * b->x)) >> W2V_SHIFT; } void FP_GetMatrixAngles(MATRIX3D* m, short* angles) { short yaw = phd_atan(m->m22, m->m02); short pitch = phd_atan(sqrt((m->m22 * m->m22) + (m->m02 * m->m02)), m->m12); int sy = phd_sin(yaw); int cy = phd_cos(yaw); short roll = phd_atan(((cy * m->m00) - (sy * m->m20)), ((sy * m->m21) - (cy * m->m01))); if (((m->m12 >= 0) && pitch > 0) || ((m->m12 < 0) && pitch < 0)) pitch = -pitch; angles[0] = pitch; angles[1] = yaw; angles[2] = roll; } __int64 FP_ToFixed(__int64 value) { return (value << FP_SHIFT); } __int64 FP_FromFixed(__int64 value) { return (value >> FP_SHIFT); } PHD_VECTOR* FP_Normalise(PHD_VECTOR* v) { long a = v->x >> FP_SHIFT; long b = v->y >> FP_SHIFT; long c = v->z >> FP_SHIFT; if ((a == 0) && (b == 0) && (c == 0)) return v; a = a * a; b = b * b; c = c * c; long d = (a + b + c); long e = sqrt(abs(d)); e <<= FP_SHIFT; long mod = FP_Div(FP_ONE << 8, e); mod >>= 8; v->x = FP_Mul(v->x, mod); v->y = FP_Mul(v->y, mod); v->z = FP_Mul(v->z, mod); return v; }