
Lua basics
By Kubsy

Hi, and welcome to the basics of Lua! This page will launch straight to the point teaching you basic
programming theory to get you started making Lua scripts for TombEngine.

Contents:
1) Variables and Data Types
2) Mathematical Operations
3) Decision-Making
4) Relational and Logical Operators
5) Loops
6) Tables/Arrays
7) Lua's Math Library
8) Creating Functions for Volume Triggers
9) Creating Functions Inside the Script
10) Script Readability
Conclusion
Credits

If you feel familiar enough with the material and would like to learn more complex and in-depth stuff about
Lua, check out the official documentation: https://www.lua.org/pil/contents.html

If you feel ready to create interesting setups for your TombEngine level, check out the scripting tutorial:
https://github.com/MontyTRC89/TombEngine/wiki/Lua-Script-Tutorials

Let's start!

1) Variables and Data Types

Variables
Variables are an essential feature of every scripting language. They serve as containers that store specified
information, be it text, numbers, or userdata, and allow you to manipulate their contents in many scenarios.

In Lua, you can define local and global variables:

Local variables exist only within the code block in which they are defined.
Global variables exist script-wide and can be accessed from anywhere.

(Quick aside: the following is an example of a code block. Instructions belonging to the block are typically
inset with a tab for ease of readability. A key detail to remember: in Lua, blocks are always closed with the
keyword end at the bottom!)

i = 0
while (i < 10) do
 local name = "TombEngine"
 print(name)
 i = i + 1
end

In the above example, the local variable name, defining the string of text "TombEngine", exists only within
the block of this while loop (explained in section 5). This means it cannot be used anywhere except inside of
it. Every local variable must have the local keyword before the declaration of its name.

Meanwhile, the global variable i, defining the integer 0, exists across the script. This means it can be used
anywhere within it, inside and outside any block. A variable without a keyword before the declaration of
its name is global by default.

Data Types
In Lua, there are seven types of data you may use in your scripts:

1. Strings

Strings are collections of characters storing text, and are particularly useful if you want to store words,
phrases, or sentences for dialogue in a variable.
To declare and define a string, initialize the variable with whatever characters you wish, encased within
double-quotes ("") or single-quotes (''):

local laraCuriousString = "Huh, what is this?"
local lernerAngryString = 'Lara, what are you doing?!'

2. Integers

Integers are whole numbers which can be positive or negative. They are useful for storing things such
as health values and timers, and are ideal for dealing with dreaded magic numbers (more on them
later).
To declare and define an integer, simply initialize the variable with a whole number:

local entityHealth = 100
local negativeNumber = -6

3. Floating-Point Number (Decimals)

Floating-point numbers are decimal point numbers, which, just like integers, can be positive or
negative. They are useful for storing things that require more precision than what an integer provides.
To declare a and define floating-point number, initialise the numeric variable with a decimal place:

local orientationX = 23.9
local negativeRotationY = -55.5

4. Booleans

Booleans can have only two possible values: true or false. Boolean variables are useful for checking
event conditions. Example:

isLaraKilled = false
if isLaraKilled == true
 print("What have you done?!!")
end

5. Tables

Tables are best understood as a collection, which may be represented by an array (a list of values) or
a hash table (a look-up dictionary). Tables are quite complex and may not be needed for simple
setups, but are still worth explaining. They will be discussed further in the Tables (Arrays) section.

6. Userdata

Userdata is a very essential data type and will be very common during TombEngine Lua scripting.
Userdata are anything that is not built-in lua type hence in TombEngine, you will have functions and
methods which are: GetMoveableByName or Color.new (explanation on these are in the Docs)

Userdata can be used like this: local raptor = TEN.Objects.GetMoveableByName("raptor1") or
Color.new(255, 255, 255)

(Pssst, you don't have to write TEN.Objects. if you write this in your Lua file:

local Util = require("Util")
Util.ShortenTENCalls()

Util variable will store another Lua file which is "Util.lua" and gets its functions (that file must be
present in your script folder!) which will then call the ShortenTENcalls() function so you can save

your fingers and don't have to type TEN.Objects.)

7. Functions

Functions are another data type which will be required if you want to use volume triggers within Tomb
Editor.
Functions are blocks of code which can be reused as many times as you like in the script and in as many
volume triggers as you like. More information on functions in the "Creating function for Volume
triggers" and "Creating functions inside the script" sections.

2) Mathematical Operations
In programming, you can do arithmetic operators to Integers and decimal-point numbers in order to do some
calculations. In Lua, there are 7 types of Arithmetic. Before explaining these Operators, let's define some
variables:

local a = 10
local b = 5

now we can use these 2 variables to perform arithmetic:

1. Addition

You can add variables as long as they have numbers:

local c = a + b
print(c)

Output: 15

Explanation: since we declared and initialised 2 variables already (a = 10 and b = 5) we declared
another variable (c) which will add these 2 variables together.

2. Subtraction

You can subtract variables as long as they have numbers:

local c = a - b
print(c)

Output: 5

Explanation: This will subtract 2 variables to give you c = 5

3. Multiplication

You can multiply variables as long as they have numbers:
note: in programming, in order to do multiplication, you have to put an asterisk * not like in
normal maths you put "x"

local c = a * b
print(c)

Output: 50

Explanation This will multiply 2 variables to give you c = 50

4. Division

You can divide variables as long as they have numbers:

Note: in programming, you need to put / to divide.

local c = a / b
print(c)

Output: 2

Explanation: Here we have divided 2 variables to give you c = 2

5. Modulus

A modulus (or a modulo) is a special operator which acts like division but it will return the remainder.
A modulus is performed with a % sign

local c = a % b
print(c)

Output: 0

Explanation: since 10 divided by 5 is 2 then the remainder is 0 because it doesn't give you a
"leftover" number and 10 / 5 can be exactly divided which won't give you a fractional/decimal
number
if you were to put:

local a = 10
local b = 6
local c = a % b
print(c)

Output: 4

then the remainder is 4 as 10 / 6 cannot be exactly divided and it's a decimal number.

6. Exponent (power operator)

An exponent is an operator which will multiply the number by itself
An exponent is performed by: a^b where a = number and b = number of times to multiply itself
by

local c = a^2
print(c)

Output: 100

Explanation: since a = 10 then 10 to the power of 2 is 100 (because 10 x 10 = 100)

7. Unary (negation)

Unary is a special operator which will convert the positive number to a negative
Unary is performed by putting - to a variable

local c = -a
print(c)

Output: -10

explanation: we negated the a variable so now it became -10 (think of it as -1 x 10 or -(10) = -10)

All of these operators come in handy if you want to perform some sort of calculations in-game for example
you can perform a tricky calculation to move a static or rotate it or even to check distances precisely and etc.

3) Decision-Making
In programming, Decision-making implies making choices and evaluating if one condition is true or false, if
either one of them is true then it will take that route however if it is false then it will take an alternative route.

in Lua there are 3 decision-making statements:

if statements

an if statement will check if the condition is true and if it is then it executes the code

local a = 2
local b = 1
local c = a + b

if c == 3 then print("c is 3") end

OR

if c == 3 then
 print("c is 3")
end

In the above example, the if statement determine if c = 3 if it is then it prints that c contains 3
value. as you can see, you can make an inline if or a block if statement.

elseif statement

elseif statement will trigger if the if statement appears to be false, you can add as many elseifs as
you like

local a = 2
local b = 2
local c = a + b

if c == 3 then
 print("c is 3")
elseif c == 4 then
 print("c is 4")
end

else statement

else statement is used if neither if and elseif statement is true

 local a = 1
 local b = 1
 local c = a + b

 if c == 3 then
 print("c is 3")
 elseif c == 4 then
 print("c is 4")
 else
 print("c is neither a 3 or a 4"
 end

4) Relational and Logical Operators
Relational and Logical operators are the types of operators which checks for comparison for both variables
given the operator. They are commonly used within loops and if statements so let's go have a look at them:

Relational operators
In Lua (and in any other programming language) you have 6 relational operators:

1. Equal ==

The equal sign will check if 2 variables are equal to each other

local a = 10
local b = 10

if a == b then print("a is equal to b") end

2. does not equal to ~=

The does not equal to if the 2 variables don't equal each other

local a = 23
local b = 9

if a ~= b then
 print("a does not equal to b")
else
 print("a is equal to b")
end

3. greater than >

greater than > will check if the left-hand side is equal to right-hand side.

local a = 23
local b = 9

if a > b then print("a is greater than b") end

4. less than <

less than < is the same as greater than > but checks if left-hand side is less than the right-hand side.

local a = 23
local b = 9

if b < a then print("b is less than a") end

5. greater than or equal to >=

greater than or equal to >= checks if the left-hand side is greater or equal to left-hand side.

local a = 23
local b = 22

if a >= b then print("a is either greater than or equal to b") end

6. less than or equal to <=

less than or equal to <= checks if the left-hand side is less or equal to left-hand side.

local a = 23
local b = 22

if b <= a then print("b is either less than or equal to a") end

logical operators
Again, in Lua (and in any other programming language) you have 3 types of logical operators:

1. AND operator

AND operator will check if both or more expressions are true

local score = 60
local health = 40

if score >= 60 and health >= 50 then
 print("score and health both are above minimum, well done!")
else
 print("Score or health is not above the minimum, game over!")

2. OR operator

OR operator will evaluate if either one of the expressions (if there are 2 or more expressions) is true

local healthLeft = 25
local game_over = false

if healthLeft <= 25 or game_over == true then
 print("Game over!")
else
 print("Game is not over yet!")
end

3. NOT operator

NOT operator will evaluate if the expression is not true

local isLaraDead = true

if not isLaraDead then
 print("Lara is still alive")
else
 print("She ded!")
end

5) Loops
Loops are another important programming concept used by all programming languages. Loops execute
statements over and over until a certain condition has been reached or it has been set to true. Loops are
useful to repeat the same stuff over again for example loop the script until Lara has picked up the artefact or
killed an enemy.

In Lua there are 4 types of loops which may be used:

1. For loops

For loops are types of loops which will loop the statements until something has been reached or
something is completed.
The syntax for For loops is:

for init,max/min value, n
do
statement(s)
end

Where:
init = Variable initialisation
max/min value = minimum or maximum value to loop
n = increments the loop by n number

Example:

for i = 0, 5, 1 do
 if i == 5 then
 print("This is the final step!")
 else
 print("We are at step " .. i)
 end
end

 output:
 - We are at step 1
 - We are at step 2
 - We are at step 3
 - We are at step 4
 - This is the final step!

2. While loop

A while loop is another type of loop which will loop endlessly while a condition is true. The while loop
checks for the condition at the top of the block

the syntax for a while loop is:

while(condition)
do
statement(s)
end

Where the condition is the condition you specify for the while loop to test if it is true or not.

Example:

local name = "Hi, I'm Lara Croft!"
local i = 10

while(i ~= 20) do
 print(name)
 i = i + 1
end

output:
- Hi, I'm Lara Croft!
- Hi, I'm Lara Croft!
- Hi, I'm Lara Croft!
- Hi, I'm Lara Croft!
- Hi, I'm Lara Croft!
- Hi, I'm Lara Croft!
- Hi, I'm Lara Croft!
- Hi, I'm Lara Croft!
- Hi, I'm Lara Croft!
- Hi, I'm Lara Croft!

With a while loop, you can do an infinite loop but be careful as doing an infinite loop not correctly may
perform some unintended behaviour (for example infinitely spawn enemies) and the engine may not
handle this and the game will crash.

while(true) do
 print("Aaaaaaaa")
end

3. Repeat ... until loop

Repeat ... until the loop is another loop which is similar to a while loop however, the repeat loop will
check if the condition is true at the bottom of the loop

this means that in a while loop if the condition is true initially, then the while loop will not execute.
However, if the repeat until the loop is true initially, it will still run the statements but then it will stop.

the syntax for a repeat until the loop is:

repeat
statement(s)
until(condition)

Example:

local someName = "Von Croy"
local i = 0
repeat
 print(someName)
 i = i + 1
until(i == 10)

output:
- "Von Croy"
- "Von Croy"
- "Von Croy"
- "Von Croy"
- "Von Croy"
- "Von Croy"
- "Von Croy"
- "Von Croy"
- "Von Croy"
- "Von Croy"

there is a keyword that may also be useful which is a break statement which will terminate the loop.

break statement can be used to break the loop if the loop has reached halfway to executing, for
example, if you set a variable to i = 0 and put an if statement to check if the number has reached
5, then it will execute the break statement to terminate the loop.

4. Pairs and Ipairs

Pairs() and ipairs() are functions which are mostly used for loops, they can be used for stuff that
don't have an ending point and will print out key and values for both of them. This is similar to
enumerate() in python

ipairs() is used to iterate through an array:

local namesArray = {"Lara", "VonCroy", "Seth"}

for index, value in ipairs(namesArray) do
 print("name " .. value .. " has value " .. index)
end

output:

index Lara has value 1
index VonCroy has value 2
index Seth has value 3

pairs() are similar to ipairs() but they are used with the dictionary element's key and value:

local inventory = {
["small medipack"] = 4,
["Big Medipack"] = 2,
["HK ammo"] = 100,
}

print("You have:")

for itemName, itemValue in pairs(inventory) do
 print(itemValue, itemName)
end

Output:
You have:
2 Big Medipack
4 small medipack
100 HK ammo

6) Tables (Arrays)
In Programming, arrays are a list of values which contain multiple values with the same data type. In
Lua, they are called tables. An index in an array is the position where the value is in for example:

local names = {"Lara", "Zip", "Winston"}
print(names[2])
Output: Zip

in the above example, we have initialised a table (array) with 3 values, they must be enclosed with curly
brace {}. To get a value from the table, you have to put the number in the square brackets with the
table name (so in the above example, it is names[2])

In Lua, the index will always start at 1. In most of the other popular programming languages,
the index would start at 0.
to retrieve the length of the table, you can put a # operator in front of the table name
print(#names) -- 3

Tables could be a very useful feature to store multiple enemies in the same table in order to manipulate
them at the same time such as: destroying them, modifying their health for each of them etc
simultaneously.

There are very essential methods which you can use for table manipulation which can be found here:
https://www.tutorialspoint.com/lua/lua_tables.htm however these 2 will be very essential for table
manipulation:

table.insert (table, pos, value)
this will insert the value given the table name, position value (for example inserting the
value at position 7) and the value
table.insert(names, 4, "Natla") - this will insert the name "Natla" at position 4 in
names table
Or for inserting, you can use a # operator

myTab[#names + 1] = "Larson"
print(#names, names[4]) output: Larson

Be careful with this operator though as leaving a gap will give you incorrect length of the
array:

local myTab = {"Lara", "Zip", "Winston"}
myTab[5] = "Pierre"
print(#myTab) output: 3

table.remove(table, pos)
This simply removes the value given its position
table.remove(names, 2) - this removes the value "Zip" from namestable

7) Lua's Mathematics Library
In Lua, you have a mathematics library which lets you do even more complex mathematics, similar to Scientific
or Engineering mathematics. There is a full list of mathematical methods are explained in here:
https://www.tutorialspoint.com/lua/lua_math_library.htm

note:

1 radian = 57,3 degrees approx, 2π radians = 360 degrees, π radians = 180 degrees and so on...
general formula: to convert radians to degrees: Radians x (180/π) and from degrees to radians:
Degrees × (π/180)
radians should be rounded to 3 significant figures

0.364621 radians = 0.365 radians

Here's a list of some useful math methods you might use:

math.pi value of pi (π) to be used in math functions

math.rad(x) value of x converted to radians given in degrees

math.rad(90) - 1.57 rad (π/2 radians)

math.sin(x) returns the sine of x (x in radians)

math.sin(math.pi) output: 0 (this is because the sine graph cuts the x-axis
at π hence 0
math.sin(math.pi/3) output: 1/2 (exact value)
math.sin(29) output: -0.664 (to 3 significant figures)

math.cos(x) returns the cosine of x (x in radians)

math.cos(math.pi) output: -1 (minimum amplitude of cosine graph at π hence
-1)
math.cos(15) output: -0.760 (3 significant figures)

math.tan(x) returns the tan of x (x in radians)

math.tan(math.pi/2) output: undefined (the tangent graph is undefined at
math.pi/2 (90 degrees)
math.tan(math.pi/4) output: 1
math.tan(70) output: 1.22 (3 significant figures)

math.random (m, n) randomises the number given the m and n where m = minimum value and n -
maximum value

math.random(1,7) output: returns a random number which is between 1 and 7

Again, there are many functions in the maths library such as: math.log(x) - natural logarithm of x
math.asin(x) - arc sine of x or math.atan (x) the arc tangent of x however these are very difficult to
explain and I will leave it to you to do some research about them.

8) Creating Functions for Volume Triggers
In the earlier section (Variables and data types) we learned that functions are blocks of code that can be
used as often as you like and in many volume triggers.

This section will show you have to create functions for volume triggers.

Creating Functions
In order to make functions, we need to make use of a method called LevelFuncs which will allow you
to put the function in the volume trigger so make sure to have it or it will not appear! We can then call
our function then make it equal to a function() and then you can make statements to execute when
the function is called:

LevelFuncs.EnemySpawner = function()
 -- statements go here
end

Congrats, you now have an enemyspawner function and now you can insert it to your volume
trigger

Volume Triggers and How to Use Them
Volume triggers are a new special trigger in TEN which allow you to put Lua functions inside, you have
2 kinds of triggers: Sphere and Cube Both can be resized and moved freely and they are not tied to the
floor, this is great!

To insert a volume trigger, you need to have 2 buttons on your top bar shown:

if you do not then you can right-click on your toolbar -> customize -> move the sphere and cube
triggers to the right-hand side of the window and press apply, as shown in the pictures:

Great you now can place your volume triggers on the map which will look like this:

If you double-click on them, you will have a little window shown:

As you can see, the volume triggers can be activated by anything, not just Lara, so you can have these
triggers triggered by an enemy, a camera, moveable or by even a static! On the right-hand side is
where you place your function accordingly. You have 3 states:

OnEnter - this will trigger the volume once Lara or another object enters the volume trigger
OnInside - Triggers the volume when Lara or other objects are inside the volume trigger and it
will trigger per game frame
OnLeave - Triggers the volume when Lara or another object leaves the volume trigger

So as you can see with volume triggers, you can do a lot of new and exciting stuff! I will be looking

forward to what you create with these

Special TombEngine Fields
While scripting you will have 5 fields available at your disposal:

OnStart() - Calls the function when the game starts
OnLoad() - Calls the function when the game is loaded via save
OnSave() - Calls the function when the game is saved
OnExit() - Calls the function when the player leaves the game (includes: finishing a level, exiting
to title menu and loading a save in different level)
OnControlPhase(delta) - a special field which will call the function per game frame (you can also
pass in a delta time as argument, more on that in the next section)

What Is Delta Time and How Do I Use It?

Imagine you have a 10x10 room and there's a static on the other end of the room and Lara on the
another. You decide to create a function which will move the static across the room with a velocity of 2
clicks to the right in OnControlPhase() per frame. Everything goes right and it's all good however what
if you have a potato pc and your game decides to lag? Well here's the problem the static will teleport
instead of moving at a constant velocity whereas on another pc - powerful with constant 30 fps, will act
normally. This is the problem and you have to solve it. The way to solve it is by using delta time (dt) for
your OnControlPhase()

Delta time is the time difference between the last frame and the current time (i.e time difference
to render the frame)

9) Creating Functions Inside the Script
You can also create functions (also called as subprograms) while scripting, remember a function is a
block of code which can be executed as many times as you like.

the syntax for creating functions is as follows:

function_body
return parameter_result (separated by comma)
end

where:
Optional function scope - scope of the function, local or global.
function name - the name of your function
arguments - Arguments to be passed in to process the value (This is optional - you can
leave it blank, it depends on what your function will do.)
function body - statements which will be done once the function is called and if any
arguments have been passed in
return - returns the value from the process inside the function separated by commas
meaning you can return multiple values (optional)

local Util = require("Util")
Util.ShortenTENCalls()

function InitSentence()
 local laraChatting = "Lara: Get me that code, OR ELSE!"
 local text = DisplayString(laraChatting, 500, 500, Color.new(255,0,0))
 ShowString(text, 6)
end

LevelFuncs.OnStart = function()
 InitSentence()
end

Explanation:

The LevelFuncs.Onstart = function() will be executed once you start the game, it will call the
function InitSentence()

Inside the InitSentence() function, you have:

a variable laraChatting to make a string variable where Lara says something
another variable text which uses DisplayString() to customise the string, the text is 500
pixels both along the x and y-axis and colour of red.
ShowString() is used to actually display the string on screen for 6 seconds.

This results in:

10) Script Readability
Programming can be a fun task sometimes, you write code and bam it works as expected. However,
there's one thing you need to consider especially if you want to share the code with others, and that is
readability. You do not want a really messy code in your script, that is neither good for you nor for
others when you share because:

1. Will make debugging difficult
2. will be difficult to read your own code and understand it.

Here are some good techniques to improve readability in your code:

Magic Numbers
Consider this script command:

Color(245,134,100)

What can you notice about this command? Sure you know that you're defining a new colour which will
have those RGB values, ok perfect! Now let's take a look at another example.

Say you are creating a new object or an enemy:

local newRaptor = Moveable.new(ObjID.RAPTOR, "raptor", Vec3(25674, 34,
12456), Rotation(0,0,0), 100, 0, 0, 10, 0, {0,0,0,0,0,0})

Now this is an extreme problem because you are now dealing with random numbers which you do not
know what they mean, for example: what does - {0,0,0,0,0,0} mean? or a bunch of 0s or a 10? Now
you're in panic mode.

These numbers are called Magic numbers. Magic numbers is when you have numbers in your code but
they do not give you a clear explanation of what they do, meaning they will hold you back because you
need to fully understand what they mean and traverse either through code or the docs to find out if
necessary and that will be time-consuming, and it's a bad practice in general.

One way to fix this is to define variables which will help deal with those pesky magic numbers:

local raptorPosition = Vec3.new(25674, 34, 12456)
local raptorRotation = Rotation.new(0,0,0)
local raptorRoomLocation = 100
local raptorAnimNumber = 0
local raptorFrameNumber = 0
local raptorHealth = 10
local raptorOcb = 0
local raptorAINumber = {0,0,0,0,0,0}

local newRaptor = Moveable.new(ObjID.RAPTOR, "raptor", raptorPosition,
raptorRotation, raptorRoomLocation, raptorAnimNumber, raptorFrameNumber,
raptorHealth, raptorOcb, raptorAINumber)

Now as you can see this is extremely nice and better, you now eliminated magic numbers and you
know what each field do and make readability and debugging much easier for you and for other.

Congrats

Comments
You can also comment your code or comment the code out completely to debug a certain issue, it will
be ignored by the compiler (or TEN itself).
To make a single-line comment, you should use a double dash -- symbol

local number = 12 -- This will comment on the variable line
Or if you can multiple lines commented out, you should use --[[--]] symbol

--[[
local hi = "yo"
local company = "Copro Dengise"
local name = "Del"

local holyObject = "Del's calculator"
--]]

As you can see, comments are useful for commenting on what is going on in the code and debugging
easily.

Naming Conventions
Imagine you are reading a person's example script. let's say the example is about moving the static.

 LevelFuncs.!@MOvESTatIC = function()
 local KiTCHenUTENSils = GetStaticByName(Utensils)
 local tOTHEriGHTSEctor = 1024
 KiTCHenUTENSils:SetPosition(Vec3(0,tOTHErIGHTSEctor,0))

What can you notice?

Unfortunately, the variable naming and function naming is not great - you have lowercase and
uppercase characters everywhere and also the special characters at the beginning of the function name.
This is not great as this decreases readability a lot, especially in a larger script and most importantly:
retains consistency.

To combat this, in programming, we have a term called Naming Conventions. Naming Conventions
are naming rules for variables, functions, and classes that you, your friend, your corporation, or anyone
has set.

There are several naming conventions but 3 most popular are:

PascalCase

PascalCase is when the variable or function name has uppercase character in every connected word.
from above example: LevelFuncs.MoveStatic = function()

I use PascalCase for function naming.

CamelCase

CamelCase is similar to PascalCase but this time, the starting word character has a lower-case
character, whilst other words have upper-case character.

From above example: local kitchenUtensils = GetStaticByName(KitchenUtensils)
I use CamelCase for variable naming.

snake_case

snake_case is also a popular name convention. Snake_case refers to names instead of being connected
together, they are separated with an underscore (_) between them.

LevelFuncs.move_static = function()

I don't use it, but you can use it for functions and variables.

Naming conventions aren't tied to each thing for example you don't have to strictly use PascalCase for
functions just because someone has that as well.

Conclusion
Congratulations! You have reached the end of this tutorial. I hope it has helped you understand Lua and
gain more confidence about scripting for TombEngine. We look forward to seeing the creative puzzles,

contraptions, and effects you make.

Credits
Kubsy - Lua Basics Tutorial

Proofreading and Error Checks
JoeyQuint
RemRem
Sezz
Stranger1992
SquidShire (Hispidence)

