#include "Renderer11.h" #include "..\Game\camera.h" #include "..\Game\draw.h" #include "..\Global\global.h" #include "..\Specific\config.h" #include "..\Scripting\GameFlowScript.h" #include "..\Specific\roomload.h" #include #include #include using ns = chrono::nanoseconds; using get_time = chrono::steady_clock; extern GameConfiguration g_Configuration; extern GameFlow* g_GameFlow; extern __int32 NumTextureTiles; __int32 SortLightsFunction(RendererLight* a, RendererLight* b) { if (a->Dynamic > b->Dynamic) return -1; return 0; } bool SortRoomsFunction(RendererRoom* a, RendererRoom* b) { return (a->Distance < b->Distance); } __int32 SortRoomsFunctionNonStd(RendererRoom* a, RendererRoom* b) { return (a->Distance - b->Distance); } Renderer11::Renderer11() { initialiseHairRemaps(); } Renderer11::~Renderer11() { DX11_RELEASE(m_device); DX11_RELEASE(m_context); DX11_RELEASE(m_swapChain); DX11_RELEASE(m_backBufferRTV); DX11_RELEASE(m_backBufferTexture); DX11_RELEASE(m_depthStencilState); DX11_RELEASE(m_depthStencilTexture); DX11_RELEASE(m_depthStencilView); DX11_DELETE(m_spriteBatch); DX11_DELETE(m_gameFont); DX11_DELETE(m_states); FreeRendererData(); } void Renderer11::FreeRendererData() { DX11_DELETE(m_textureAtlas); DX11_DELETE(m_binocularsTexture); for (__int32 i = 0; i < NUM_CAUSTICS_TEXTURES; i++) DX11_DELETE(m_caustics[i]); } bool Renderer11::Create() { return true; } bool Renderer11::EnumerateVideoModes() { return true; } bool Renderer11::Initialise(__int32 w, __int32 h, __int32 refreshRate, bool windowed, HWND handle) { HRESULT res; DB_Log(2, "Renderer::Initialise - DLL"); printf("Initialising DX11\n"); CoInitialize(NULL); ScreenWidth = w; ScreenHeight = h; Windowed = windowed; D3D_FEATURE_LEVEL levels[1] = { D3D_FEATURE_LEVEL_10_1 }; D3D_FEATURE_LEVEL featureLevel; res = D3D11CreateDevice(NULL, D3D_DRIVER_TYPE_HARDWARE, NULL, D3D11_CREATE_DEVICE_DEBUG, levels, 1, D3D11_SDK_VERSION, &m_device, &featureLevel, &m_context); if (FAILED(res)) return false; DXGI_SWAP_CHAIN_DESC sd; sd.BufferDesc.Width = ScreenWidth; sd.BufferDesc.Height = ScreenHeight; sd.BufferDesc.RefreshRate.Numerator = refreshRate; sd.BufferDesc.RefreshRate.Denominator = 1; sd.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM; sd.Windowed = g_Configuration.Windowed; sd.SwapEffect = DXGI_SWAP_EFFECT_DISCARD; sd.Flags = DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_SWITCH; sd.OutputWindow = handle; sd.SampleDesc.Count = 1; sd.SampleDesc.Quality = 0; sd.BufferCount = 1; sd.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; IDXGIDevice* dxgiDevice = NULL; res = m_device->QueryInterface(__uuidof(IDXGIDevice), (void**)&dxgiDevice); if (FAILED(res)) return false; IDXGIAdapter* dxgiAdapter = NULL; res = dxgiDevice->GetParent(__uuidof(IDXGIAdapter), (void**)&dxgiAdapter); if (FAILED(res)) return false; IDXGIFactory* dxgiFactory = NULL; res = dxgiAdapter->GetParent(__uuidof(IDXGIFactory), (void**)&dxgiFactory); if (FAILED(res)) return false; m_swapChain = NULL; res = dxgiFactory->CreateSwapChain(m_device, &sd, &m_swapChain); if (FAILED(res)) return false; dxgiDevice->Release(); dxgiAdapter->Release(); dxgiFactory->Release(); // Initialise the back buffer m_backBufferTexture = NULL; res = m_swapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), reinterpret_cast (&m_backBufferTexture)); if (FAILED(res)) return false; m_backBufferRTV = NULL; res = m_device->CreateRenderTargetView(m_backBufferTexture, NULL, &m_backBufferRTV); if (FAILED(res)) return false; D3D11_TEXTURE2D_DESC depthStencilDesc; depthStencilDesc.Width = ScreenWidth; depthStencilDesc.Height = ScreenHeight; depthStencilDesc.MipLevels = 1; depthStencilDesc.ArraySize = 1; depthStencilDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT; depthStencilDesc.SampleDesc.Count = 1; depthStencilDesc.SampleDesc.Quality = 0; depthStencilDesc.Usage = D3D11_USAGE_DEFAULT; depthStencilDesc.BindFlags = D3D11_BIND_DEPTH_STENCIL; depthStencilDesc.CPUAccessFlags = 0; depthStencilDesc.MiscFlags = 0; m_depthStencilTexture = NULL; res = m_device->CreateTexture2D(&depthStencilDesc, NULL, &m_depthStencilTexture); if (FAILED(res)) return false; m_depthStencilView = NULL; res = m_device->CreateDepthStencilView(m_depthStencilTexture, NULL, &m_depthStencilView); if (FAILED(res)) return false; // Bind the back buffer and the depth stencil m_context->OMSetRenderTargets(1, &m_backBufferRTV, m_depthStencilView); // Initialise sprites and font m_spriteBatch = new SpriteBatch(m_context); m_gameFont = new SpriteFont(m_device, L"Font.spritefont"); m_primitiveBatch = new PrimitiveBatch(m_context); // Initialise render states m_states = new CommonStates(m_device); // Load caustics char* causticsNames[NUM_CAUSTICS_TEXTURES] = { "CausticsRender_001.bmp", "CausticsRender_002.bmp", "CausticsRender_003.bmp", "CausticsRender_004.bmp", "CausticsRender_005.bmp", "CausticsRender_006.bmp", "CausticsRender_007.bmp", "CausticsRender_008.bmp", "CausticsRender_009.bmp", "CausticsRender_010.bmp", "CausticsRender_011.bmp", "CausticsRender_012.bmp", "CausticsRender_013.bmp", "CausticsRender_014.bmp", "CausticsRender_015.bmp", "CausticsRender_016.bmp" }; for (__int32 i = 0; i < NUM_CAUSTICS_TEXTURES; i++) { m_caustics[i] = Texture2D::LoadFromFile(m_device, causticsNames[i]); if (m_caustics[i] == NULL) return false; } m_binocularsTexture = Texture2D::LoadFromFile(m_device, "Binoculars.png"); if (m_binocularsTexture == NULL) return false; // Initialise viewport m_viewport.TopLeftX = 0; m_viewport.TopLeftY = 0; m_viewport.Width = ScreenWidth; m_viewport.Height = ScreenHeight; m_viewport.MinDepth = 0.0f; m_viewport.MaxDepth = 1.0f; // Load shaders ID3D10Blob* blob; m_vsRooms = compileVertexShader("Shaders\\DX11_Rooms.fx", "VS", "vs_4_0", &blob); if (m_vsRooms == NULL) return false; // Initialise input layout using the first vertex shader D3D11_INPUT_ELEMENT_DESC inputLayout[] = { {"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0}, {"NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0}, {"TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 24, D3D11_INPUT_PER_VERTEX_DATA, 0}, {"COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 32, D3D11_INPUT_PER_VERTEX_DATA, 0}, {"BLENDINDICES", 0, DXGI_FORMAT_R32_FLOAT, 0, 48, D3D11_INPUT_PER_VERTEX_DATA, 0}, }; m_inputLayout = NULL; res = m_device->CreateInputLayout(inputLayout, 5, blob->GetBufferPointer(), blob->GetBufferSize(), &m_inputLayout); if (FAILED(res)) return false; m_psRooms = compilePixelShader("Shaders\\DX11_Rooms.fx", "PS", "ps_4_0", &blob); if (m_psRooms == NULL) return false; m_vsItems = compileVertexShader("Shaders\\DX11_Items.fx", "VS", "vs_4_0", &blob); if (m_vsItems == NULL) return false; m_psItems = compilePixelShader("Shaders\\DX11_Items.fx", "PS", "ps_4_0", &blob); if (m_psItems == NULL) return false; m_vsStatics = compileVertexShader("Shaders\\DX11_Statics.fx", "VS", "vs_4_0", &blob); if (m_vsStatics == NULL) return false; m_psStatics = compilePixelShader("Shaders\\DX11_Statics.fx", "PS", "ps_4_0", &blob); if (m_psStatics == NULL) return false; m_vsHairs = compileVertexShader("Shaders\\DX11_Hairs.fx", "VS", "vs_4_0", &blob); if (m_vsHairs == NULL) return false; m_psHairs = compilePixelShader("Shaders\\DX11_Hairs.fx", "PS", "ps_4_0", &blob); if (m_psHairs == NULL) return false; m_vsSky = compileVertexShader("Shaders\\DX11_Sky.fx", "VS", "vs_4_0", &blob); if (m_vsSky == NULL) return false; m_psSky = compilePixelShader("Shaders\\DX11_Sky.fx", "PS", "ps_4_0", &blob); if (m_psSky == NULL) return false; m_vsSprites = compileVertexShader("Shaders\\DX11_Sprites.fx", "VS", "vs_4_0", &blob); if (m_vsSprites == NULL) return false; m_psSprites = compilePixelShader("Shaders\\DX11_Sprites.fx", "PS", "ps_4_0", &blob); if (m_psSprites == NULL) return false; // Initialise constant buffers m_cbCameraMatrices = createConstantBuffer(sizeof(CCameraMatrixBuffer)); m_cbItem = createConstantBuffer(sizeof(CItemBuffer)); m_cbStatic = createConstantBuffer(sizeof(CStaticBuffer)); m_cbRoomLights = createConstantBuffer(sizeof(CLightBuffer)); // Initialise the ambient cube map D3D11_TEXTURE2D_DESC texDesc; ZeroMemory(&texDesc, sizeof(D3D11_TEXTURE2D_DESC)); texDesc.Width = AMBIENT_CUBE_MAP_SIZE; texDesc.Height = AMBIENT_CUBE_MAP_SIZE; texDesc.MipLevels = 0; texDesc.ArraySize = 6; texDesc.SampleDesc.Count = 1; texDesc.SampleDesc.Quality = 0; texDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM; texDesc.Usage = D3D11_USAGE_DEFAULT; texDesc.BindFlags = D3D11_BIND_RENDER_TARGET | D3D11_BIND_SHADER_RESOURCE; texDesc.CPUAccessFlags = 0; texDesc.MiscFlags = D3D11_RESOURCE_MISC_GENERATE_MIPS | D3D11_RESOURCE_MISC_TEXTURECUBE; m_ambientCubeMapTexture = NULL; res = m_device->CreateTexture2D(&texDesc, NULL, &m_ambientCubeMapTexture); if (FAILED(res)) return false; D3D11_RENDER_TARGET_VIEW_DESC descRT; ZeroMemory(&descRT, sizeof(D3D11_RENDER_TARGET_VIEW_DESC)); descRT.Format = DXGI_FORMAT_R8G8B8A8_UNORM; descRT.ViewDimension = D3D11_RTV_DIMENSION_TEXTURE2DARRAY; descRT.Texture2DArray.ArraySize = 1; descRT.Texture2DArray.MipSlice = 0; for (__int32 i = 0; i < 6; i++) { descRT.Texture2DArray.FirstArraySlice = i; m_ambientCubeMapRTV[i] = NULL; res = m_device->CreateRenderTargetView(m_ambientCubeMapTexture, &descRT, &m_ambientCubeMapRTV[i]); if (FAILED(res)) return false; } D3D11_SHADER_RESOURCE_VIEW_DESC srvDesc; ZeroMemory(&srvDesc, sizeof(D3D11_SHADER_RESOURCE_VIEW_DESC)); srvDesc.Format = texDesc.Format; srvDesc.ViewDimension = D3D11_SRV_DIMENSION_TEXTURECUBE; srvDesc.TextureCube.MostDetailedMip = 0; srvDesc.TextureCube.MipLevels = -1; m_ambientCubeMapSRV = NULL; res = m_device->CreateShaderResourceView(m_ambientCubeMapTexture, &srvDesc, &m_ambientCubeMapSRV); if (FAILED(res)) return false; D3D11_TEXTURE2D_DESC depthTexDesc; ZeroMemory(&depthTexDesc, sizeof(D3D11_TEXTURE2D_DESC)); depthTexDesc.Width = AMBIENT_CUBE_MAP_SIZE; depthTexDesc.Height = AMBIENT_CUBE_MAP_SIZE; depthTexDesc.MipLevels = 1; depthTexDesc.ArraySize = 1; depthTexDesc.SampleDesc.Count = 1; depthTexDesc.SampleDesc.Quality = 0; depthTexDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT; depthTexDesc.Usage = D3D11_USAGE_DEFAULT; depthTexDesc.BindFlags = D3D11_BIND_DEPTH_STENCIL; depthTexDesc.CPUAccessFlags = 0; depthTexDesc.MiscFlags = 0; ID3D11Texture2D* m_ambientCubeMapDepthTexture = NULL; res = m_device->CreateTexture2D(&depthTexDesc, NULL, &m_ambientCubeMapDepthTexture); if (FAILED(res)) return false; D3D11_DEPTH_STENCIL_VIEW_DESC dsvDesc; ZeroMemory(&dsvDesc, sizeof(D3D11_DEPTH_STENCIL_VIEW_DESC)); dsvDesc.Format = depthTexDesc.Format; dsvDesc.Flags = 0; dsvDesc.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2D; dsvDesc.Texture2D.MipSlice = 0; m_ambientCubeMapDSV = NULL; res = m_device->CreateDepthStencilView(m_ambientCubeMapDepthTexture, &dsvDesc, &m_ambientCubeMapDSV); if (FAILED(res)) return false; m_testRT = RenderTarget2D::Create(m_device, AMBIENT_CUBE_MAP_SIZE, AMBIENT_CUBE_MAP_SIZE, DXGI_FORMAT_R8G8B8A8_UNORM); return true; } __int32 Renderer11::Draw() { drawScene(false); return 0; } void Renderer11::UpdateCameraMatrices(float posX, float posY, float posZ, float targetX, float targetY, float targetZ, float roll, float fov) { g_Configuration.MaxDrawDistance = 200; FieldOfView = fov; View = Matrix::CreateLookAt(Vector3(posX, posY, posZ), Vector3(targetX, targetY, targetZ), -Vector3::UnitY); Projection = Matrix::CreatePerspectiveFieldOfView(fov, ScreenWidth / (float)ScreenHeight, 20.0f, g_Configuration.MaxDrawDistance * 1024.0f); m_stCameraMatrices.View = View; m_stCameraMatrices.Projection = Projection; } bool Renderer11::drawAmbientCubeMap(__int16 roomNumber) { ROOM_INFO* r = &Rooms[roomNumber]; Vector3 laraPos = Vector3(LaraItem->pos.xPos, LaraItem->pos.yPos - 384, LaraItem->pos.zPos); //Vector3(r->x+r->xSize*1024/2, (r->RoomYBottom+r->RoomYTop)/2, r->z + r->ySize * 1024 / 2); Vector3 targets[6] = { laraPos + Vector3::UnitX * WALL_SIZE, laraPos - Vector3::UnitX * WALL_SIZE, laraPos + Vector3::UnitY * WALL_SIZE, laraPos - Vector3::UnitY * WALL_SIZE, laraPos + Vector3::UnitZ * WALL_SIZE, laraPos - Vector3::UnitZ * WALL_SIZE }; Vector3 ups[6] = { -Vector3::UnitY, -Vector3::UnitY, Vector3::UnitX, -Vector3::UnitX, -Vector3::UnitY, -Vector3::UnitY }; m_context->OMSetBlendState(m_states->Opaque(), NULL, 0xFFFFFFFF); m_context->RSSetState(m_states->CullCounterClockwise()); m_context->OMSetDepthStencilState(m_states->DepthDefault(), 0); for (__int32 i = 0; i < 6; i++) { // Clear screen m_context->ClearRenderTargetView(m_ambientCubeMapRTV[i], Colors::CornflowerBlue); m_context->ClearDepthStencilView(m_ambientCubeMapDSV, D3D11_CLEAR_DEPTH | D3D11_CLEAR_STENCIL, 1.0f, 0); // Bind the back buffer m_context->OMSetRenderTargets(1, &m_ambientCubeMapRTV[i], m_ambientCubeMapDSV); m_context->RSSetViewports(1, &m_viewport); // Set vertex buffer UINT stride = sizeof(RendererVertex); UINT offset = 0; m_context->IASetVertexBuffers(0, 1, &m_roomsVertexBuffer->Buffer, &stride, &offset); m_context->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); m_context->IASetInputLayout(m_inputLayout); m_context->IASetIndexBuffer(m_roomsIndexBuffer->Buffer, DXGI_FORMAT_R32_UINT, 0); // Reset viewport D3D11_VIEWPORT viewPort; viewPort.TopLeftX = 0.0f; viewPort.TopLeftY = 0.0f; viewPort.Width = AMBIENT_CUBE_MAP_SIZE; viewPort.Height = AMBIENT_CUBE_MAP_SIZE; viewPort.MinDepth = 0.0f; viewPort.MaxDepth = 1.0f; m_context->RSSetViewports(1, &viewPort); // Set shaders m_context->VSSetShader(m_vsAmbientCubeMap, NULL, 0); m_context->PSSetShader(m_psAmbientCubeMap, NULL, 0); // Set texture /*m_context->PSSetShaderResources(0, 1, &m_textureAtlas->ShaderResourceView); ID3D11SamplerState* sampler = m_states->AnisotropicClamp(); m_context->PSSetSamplers(0, 1, &sampler);*/ // Set camera matrices Matrix projection = Matrix::CreatePerspectiveFieldOfView(PI / 2.0f, 1.0f, 20.0f, 200.0f * WALL_SIZE); m_stCameraMatrices.View = Matrix::CreateLookAt(laraPos, targets[i], ups[i]).Transpose(); m_stCameraMatrices.Projection = projection.Transpose(); updateConstantBuffer(m_cbCameraMatrices, &m_stCameraMatrices, sizeof(CCameraMatrixBuffer)); m_context->VSSetConstantBuffers(0, 1, &m_cbCameraMatrices); for (__int32 i = 0; i < NumberRooms; i++) { RendererRoom* room = m_rooms[i]; if (room == NULL) continue; for (__int32 j = 0; j < NUM_BUCKETS; j++) { RendererBucket* bucket = &room->Buckets[j]; if (bucket->Vertices.size() == 0) continue; // Draw vertices m_context->DrawIndexed(bucket->NumIndices, bucket->StartIndex, 0); m_numDrawCalls++; } } } D3DX11SaveTextureToFile(m_context, m_ambientCubeMapTexture, D3DX11_IMAGE_FILE_FORMAT::D3DX11_IFF_DDS, "H:\\cubetest.dds"); //D3DX11SaveTextureToFile(m_context, m_testRT->Texture, D3DX11_IFF_PNG, "H:\\provart.png"); /* D3D11_VIEWPORT viewPort; viewPort.TopLeftX = 0.0f; viewPort.TopLeftY = 0.0f; viewPort.Width = AMBIENT_CUBE_MAP_SIZE; viewPort.Height = AMBIENT_CUBE_MAP_SIZE; viewPort.MinDepth = 0.0f; viewPort.MaxDepth = 1.0f; Vector3 laraPos = Vector3(LaraItem->pos.xPos, LaraItem->pos.yPos, LaraItem->pos.zPos); Vector3 targets[6] = { laraPos + Vector3::UnitX * WALL_SIZE, laraPos - Vector3::UnitX * WALL_SIZE, laraPos + Vector3::UnitY * WALL_SIZE, laraPos - Vector3::UnitY * WALL_SIZE, laraPos + Vector3::UnitZ * WALL_SIZE, laraPos - Vector3::UnitZ * WALL_SIZE }; Vector3 ups[6] = { -Vector3::UnitY, -Vector3::UnitY, Vector3::UnitX, -Vector3::UnitX, -Vector3::UnitY, -Vector3::UnitY }; m_context->OMSetBlendState(m_states->Opaque(), NULL, 0xFFFFFFFF); m_context->RSSetState(m_states->CullCounterClockwise()); m_context->OMSetDepthStencilState(m_states->DepthDefault(), 0); // Set shaders m_context->VSSetShader(m_vsAmbientCubeMap, NULL, 0); m_context->PSSetShader(m_psAmbientCubeMap, NULL, 0); // Set texture m_context->PSSetShaderResources(0, 1, &m_textureAtlas->ShaderResourceView); ID3D11SamplerState* sampler = m_states->AnisotropicClamp(); m_context->PSSetSamplers(0, 1, &sampler); Matrix projection = Matrix::CreatePerspectiveFieldOfView(PI / 2.0f, 1.0f, 20.0f, 200.0f * WALL_SIZE); // Set vertex buffer UINT stride = sizeof(RendererVertex); UINT offset = 0; m_context->IASetVertexBuffers(0, 1, &m_roomsVertexBuffer->Buffer, &stride, &offset); m_context->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); m_context->IASetInputLayout(m_inputLayout); m_context->IASetIndexBuffer(m_roomsIndexBuffer->Buffer, DXGI_FORMAT_R32_UINT, 0); for (__int32 i = 0; i < 6; i++) { m_stCameraMatrices.View = Matrix::CreateLookAt(laraPos, targets[i], ups[i]).Transpose(); m_stCameraMatrices.Projection = projection.Transpose(); updateConstantBuffer(m_cbCameraMatrices, &m_stCameraMatrices, sizeof(CCameraMatrixBuffer)); m_context->VSSetConstantBuffers(0, 1, &m_cbCameraMatrices); m_context->ClearRenderTargetView(m_ambientCubeMapRTV[i], Colors::CornflowerBlue); m_context->ClearDepthStencilView(m_ambientCubeMapDSV, D3DCLEAR_ZBUFFER | D3DCLEAR_STENCIL, 1.0f, 0); m_context->OMSetRenderTargets(1, &m_ambientCubeMapRTV[i], m_ambientCubeMapDSV); m_context->RSSetViewports(1, &viewPort); for (__int32 n = 0; n < m_roomsToDraw.Size(); n++) { RendererRoom* room = m_roomsToDraw[n]; for (__int32 j = 0; j < NUM_BUCKETS; j++) { RendererBucket* bucket = &room->Buckets[j]; if (bucket->Vertices.size() == 0) continue; // Draw vertices m_context->DrawIndexed(bucket->NumIndices, bucket->StartIndex, 0); m_numDrawCalls++; } } } //D3DX11SaveTextureToFile(m_context, m_ambientCubeMapTexture, D3DX11_IMAGE_FILE_FORMAT::D3DX11_IFF_JPG, "H:\\cubemap.png"); D3DX11SaveTextureToFile(m_context, m_ambientCubeMapTexture, D3DX11_IFF_DDS, "H:\\cubemap.dds");*/ return true; } void Renderer11::clearSceneItems() { m_roomsToDraw.Clear(); m_itemsToDraw.Clear(); m_effectsToDraw.Clear(); m_lightsToDraw.Clear(); m_staticsToDraw.Clear(); m_spritesToDraw.Clear(); m_lines3DToDraw.Clear(); } bool Renderer11::drawHorizonAndSky() { // Update the sky GameScriptLevel* level = g_GameFlow->GetLevel(CurrentLevel); Vector4 color = Vector4(SkyColor1.r / 255.0f, SkyColor1.g / 255.0f, SkyColor1.b / 255.0f, 1.0f); if (!level->Horizon) return true; if (BinocularRange) phd_AlterFOV(14560 - BinocularRange); // Storm if (level->Storm) { if (Unk_00E6D74C || Unk_00E6D73C) { UpdateStorm(); if (StormTimer > -1) StormTimer--; if (!StormTimer) SoundEffect(SFX_THUNDER_RUMBLE, NULL, 0); } else if (!(rand() & 0x7F)) { Unk_00E6D74C = (rand() & 0x1F) + 16; Unk_00E6E4DC = rand() + 256; StormTimer = (rand() & 3) + 12; } color = Vector4((SkyStormColor[0]) / 255.0f, SkyStormColor[1] / 255.0f, SkyStormColor[2] / 255.0f, 1.0f); } ID3D11SamplerState* sampler; UINT stride = sizeof(RendererVertex); UINT offset = 0; // Draw the sky Matrix rotation = Matrix::CreateRotationX(PI); RendererVertex vertices[4]; float size = 9728.0f; vertices[0].Position.x = -size / 2.0f; vertices[0].Position.y = 0.0f; vertices[0].Position.z = size / 2.0f; vertices[0].UV.x = 0.0f; vertices[0].UV.y = 0.0f; vertices[1].Position.x = size / 2.0f; vertices[1].Position.y = 0.0f; vertices[1].Position.z = size / 2.0f; vertices[1].UV.x = 1.0f; vertices[1].UV.y = 0.0f; vertices[2].Position.x = size / 2.0f; vertices[2].Position.y = 0.0f; vertices[2].Position.z = -size / 2.0f; vertices[2].UV.x = 1.0f; vertices[2].UV.y = 1.0f; vertices[3].Position.x = -size / 2.0f; vertices[3].Position.y = 0.0f; vertices[3].Position.z = -size / 2.0f; vertices[3].UV.x = 0.0f; vertices[3].UV.y = 1.0f; m_context->VSSetShader(m_vsSky, NULL, 0); m_context->PSSetShader(m_psSky, NULL, 0); m_stCameraMatrices.View = View.Transpose(); m_stCameraMatrices.Projection = Projection.Transpose(); updateConstantBuffer(m_cbCameraMatrices, &m_stCameraMatrices, sizeof(CCameraMatrixBuffer)); m_context->VSSetConstantBuffers(0, 1, &m_cbCameraMatrices); m_context->PSSetShaderResources(0, 1, &m_skyTexture->ShaderResourceView); sampler = m_states->AnisotropicClamp(); m_context->PSSetSamplers(0, 1, &sampler); m_context->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); m_context->IASetInputLayout(m_inputLayout); for (__int32 i = 0; i < 2; i++) { Matrix translation = Matrix::CreateTranslation(Camera.pos.x + SkyPos1 - i * 9728.0f, Camera.pos.y - 1536.0f, Camera.pos.z); Matrix world = rotation * translation; m_stStatic.World = (rotation * translation).Transpose(); m_stStatic.Color = color; updateConstantBuffer(m_cbStatic, &m_stStatic, sizeof(CStaticBuffer)); m_context->VSSetConstantBuffers(1, 1, &m_cbStatic); m_context->PSSetConstantBuffers(1, 1, &m_cbStatic); m_primitiveBatch->Begin(); m_primitiveBatch->DrawQuad(vertices[0], vertices[1], vertices[2], vertices[3]); m_primitiveBatch->End(); } // Draw horizon if (m_moveableObjects[ID_HORIZON] != NULL) { m_context->IASetVertexBuffers(0, 1, &m_moveablesVertexBuffer->Buffer, &stride, &offset); m_context->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); m_context->IASetInputLayout(m_inputLayout); m_context->IASetIndexBuffer(m_moveablesIndexBuffer->Buffer, DXGI_FORMAT_R32_UINT, 0); m_context->PSSetShaderResources(0, 1, &m_textureAtlas->ShaderResourceView); sampler = m_states->AnisotropicClamp(); m_context->PSSetSamplers(0, 1, &sampler); RendererObject* moveableObj = m_moveableObjects[ID_HORIZON]; m_stStatic.World = Matrix::CreateTranslation(Camera.pos.x, Camera.pos.y, Camera.pos.z).Transpose(); m_stStatic.Position = Vector4::Zero; m_stStatic.Color = Vector4::One; updateConstantBuffer(m_cbStatic, &m_stStatic, sizeof(CItemBuffer)); m_context->VSSetConstantBuffers(1, 1, &m_cbStatic); m_context->PSSetConstantBuffers(1, 1, &m_cbStatic); for (__int32 k = 0; k < moveableObj->ObjectMeshes.size(); k++) { RendererMesh* mesh = moveableObj->ObjectMeshes[k]; for (__int32 j = 0; j < NUM_BUCKETS; j++) { RendererBucket* bucket = &mesh->Buckets[j]; if (bucket->Vertices.size() == 0) continue; // Draw vertices m_context->DrawIndexed(bucket->NumIndices, bucket->StartIndex, 0); m_numDrawCalls++; } } } // Clear just the Z-buffer so we can start drawing on top of the horizon m_context->ClearDepthStencilView(m_depthStencilView, D3D11_CLEAR_DEPTH | D3D11_CLEAR_STENCIL, 1.0f, 0); return true; } bool Renderer11::drawRooms(bool transparent, bool animated) { UINT stride = sizeof(RendererVertex); UINT offset = 0; __int32 firstBucket = (transparent ? 2 : 0); __int32 lastBucket = (transparent ? 4 : 2); if (!animated) { // Set vertex buffer m_context->IASetVertexBuffers(0, 1, &m_roomsVertexBuffer->Buffer, &stride, &offset); m_context->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); m_context->IASetInputLayout(m_inputLayout); m_context->IASetIndexBuffer(m_roomsIndexBuffer->Buffer, DXGI_FORMAT_R32_UINT, 0); } // Set shaders m_context->VSSetShader(m_vsRooms, NULL, 0); m_context->PSSetShader(m_psRooms, NULL, 0); // Set texture m_context->PSSetShaderResources(0, 1, &m_textureAtlas->ShaderResourceView); ID3D11SamplerState* sampler = m_states->AnisotropicClamp(); m_context->PSSetSamplers(0, 1, &sampler); // Set camera matrices m_stCameraMatrices.View = View.Transpose(); m_stCameraMatrices.Projection = Projection.Transpose(); updateConstantBuffer(m_cbCameraMatrices, &m_stCameraMatrices, sizeof(CCameraMatrixBuffer)); m_context->VSSetConstantBuffers(0, 1, &m_cbCameraMatrices); if (animated) m_primitiveBatch->Begin(); for (__int32 i = 0; i < m_roomsToDraw.Size(); i++) { RendererRoom* room = m_roomsToDraw[i]; m_stRoomLights.NumLights = room->LightsToDraw.Size(); for (__int32 j = 0; j < room->LightsToDraw.Size(); j++) memcpy(&m_stRoomLights.Lights[j], room->LightsToDraw[j], 64); updateConstantBuffer(m_cbRoomLights, &m_stRoomLights, sizeof(CLightBuffer)); m_context->PSSetConstantBuffers(1, 1, &m_cbRoomLights); for (__int32 j = firstBucket; j < lastBucket; j++) { if (!animated) { RendererBucket* bucket = &room->Buckets[j]; if (bucket->Vertices.size() == 0) continue; m_context->DrawIndexed(bucket->NumIndices, bucket->StartIndex, 0); m_numDrawCalls++; } else { RendererBucket* bucket = &room->AnimatedBuckets[j]; if (bucket->Vertices.size() == 0) continue; for (__int32 k = 0; k < bucket->Polygons.size(); k++) { RendererPolygon* poly = &bucket->Polygons[k]; if (poly->Shape == SHAPE_RECTANGLE) { m_primitiveBatch->DrawQuad(bucket->Vertices[poly->Indices[0]], bucket->Vertices[poly->Indices[1]], bucket->Vertices[poly->Indices[2]], bucket->Vertices[poly->Indices[3]]); } else { m_primitiveBatch->DrawTriangle(bucket->Vertices[poly->Indices[0]], bucket->Vertices[poly->Indices[1]], bucket->Vertices[poly->Indices[2]]); } } } } } if (animated) m_primitiveBatch->End(); return true; } bool Renderer11::drawStatics(bool transparent) { UINT stride = sizeof(RendererVertex); UINT offset = 0; __int32 firstBucket = (transparent ? 2 : 0); __int32 lastBucket = (transparent ? 4 : 2); m_context->IASetVertexBuffers(0, 1, &m_staticsVertexBuffer->Buffer, &stride, &offset); m_context->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); m_context->IASetInputLayout(m_inputLayout); m_context->IASetIndexBuffer(m_staticsIndexBuffer->Buffer, DXGI_FORMAT_R32_UINT, 0); // Set shaders m_context->VSSetShader(m_vsStatics, NULL, 0); m_context->PSSetShader(m_psStatics, NULL, 0); // Set texture m_context->PSSetShaderResources(0, 1, &m_textureAtlas->ShaderResourceView); ID3D11SamplerState* sampler = m_states->AnisotropicClamp(); m_context->PSSetSamplers(0, 1, &sampler); // Set camera matrices m_stCameraMatrices.View = View.Transpose(); m_stCameraMatrices.Projection = Projection.Transpose(); updateConstantBuffer(m_cbCameraMatrices, &m_stCameraMatrices, sizeof(CCameraMatrixBuffer)); m_context->VSSetConstantBuffers(0, 1, &m_cbCameraMatrices); for (__int32 i = 0; i < m_staticsToDraw.Size(); i++) { MESH_INFO* msh = m_staticsToDraw[i]->Mesh; RendererRoom* room = m_rooms[m_staticsToDraw[i]->RoomIndex]; RendererObject* staticObj = m_staticObjects[msh->staticNumber]; RendererMesh* mesh = staticObj->ObjectMeshes[0]; m_stStatic.World = (Matrix::CreateRotationY(TR_ANGLE_TO_RAD(msh->yRot)) * Matrix::CreateTranslation(msh->x, msh->y, msh->z)).Transpose(); m_stStatic.Color = Vector4(((msh->shade >> 10) & 0xFF) / 255.0f, ((msh->shade >> 5) & 0xFF) / 255.0f, ((msh->shade >> 0) & 0xFF) / 255.0f, 1.0f); updateConstantBuffer(m_cbStatic, &m_stStatic, sizeof(CStaticBuffer)); m_context->VSSetConstantBuffers(1, 1, &m_cbStatic); for (__int32 j = firstBucket; j < lastBucket; j++) { RendererBucket* bucket = &mesh->Buckets[j]; if (bucket->Vertices.size() == 0) continue; // Draw vertices m_context->DrawIndexed(bucket->NumIndices, bucket->StartIndex, 0); m_numDrawCalls++; } } return true; } bool Renderer11::drawItems(bool transparent, bool animated) { __int32 firstBucket = (transparent ? 2 : 0); __int32 lastBucket = (transparent ? 4 : 2); for (__int32 i = 0; i < m_itemsToDraw.Size(); i++) { RendererItem* item = m_itemsToDraw[i]; RendererRoom* room = m_rooms[item->Item->roomNumber]; RendererObject* moveableObj = m_moveableObjects[item->Item->objectNumber]; if (moveableObj->DoNotDraw) continue; m_stItem.World = item->World.Transpose(); m_stItem.Position = Vector4(item->Item->pos.xPos, item->Item->pos.yPos, item->Item->pos.zPos, 1.0f); m_stItem.AmbientLight = room->AmbientLight; memcpy(m_stItem.BonesMatrices, item->AnimationTransforms, sizeof(Matrix) * 32); updateConstantBuffer(m_cbItem, &m_stItem, sizeof(CItemBuffer)); m_context->VSSetConstantBuffers(1, 1, &m_cbItem); for (__int32 k = 0; k < moveableObj->ObjectMeshes.size(); k++) { RendererMesh* mesh = moveableObj->ObjectMeshes[k]; for (__int32 j = firstBucket; j < lastBucket; j++) { RendererBucket* bucket = &mesh->Buckets[j]; if (bucket->Vertices.size() == 0) continue; // Draw vertices m_context->DrawIndexed(bucket->NumIndices, bucket->StartIndex, 0); m_numDrawCalls++; } } } return true; } bool Renderer11::drawLara(bool transparent) { UINT stride = sizeof(RendererVertex); UINT offset = 0; __int32 firstBucket = (transparent ? 2 : 0); __int32 lastBucket = (transparent ? 4 : 2); m_context->IASetVertexBuffers(0, 1, &m_moveablesVertexBuffer->Buffer, &stride, &offset); m_context->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); m_context->IASetInputLayout(m_inputLayout); m_context->IASetIndexBuffer(m_moveablesIndexBuffer->Buffer, DXGI_FORMAT_R32_UINT, 0); // Set shaders m_context->VSSetShader(m_vsItems, NULL, 0); m_context->PSSetShader(m_psItems, NULL, 0); // Set texture m_context->PSSetShaderResources(0, 1, &m_textureAtlas->ShaderResourceView); ID3D11SamplerState* sampler = m_states->AnisotropicClamp(); m_context->PSSetSamplers(0, 1, &sampler); // Set camera matrices m_stCameraMatrices.View = View.Transpose(); m_stCameraMatrices.Projection = Projection.Transpose(); updateConstantBuffer(m_cbCameraMatrices, &m_stCameraMatrices, sizeof(CCameraMatrixBuffer)); m_context->VSSetConstantBuffers(0, 1, &m_cbCameraMatrices); RendererObject* laraObj = m_moveableObjects[ID_LARA]; RendererObject* laraSkin = m_moveableObjects[ID_LARA_SKIN]; RendererRoom* room = m_rooms[LaraItem->roomNumber]; m_stItem.World = m_LaraWorldMatrix.Transpose(); m_stItem.Position = Vector4(LaraItem->pos.xPos, LaraItem->pos.yPos, LaraItem->pos.zPos, 1.0f); m_stItem.AmbientLight = room->AmbientLight; memcpy(m_stItem.BonesMatrices, laraObj->AnimationTransforms.data(), sizeof(Matrix) * 32); updateConstantBuffer(m_cbItem, &m_stItem, sizeof(CItemBuffer)); m_context->VSSetConstantBuffers(1, 1, &m_cbItem); m_context->PSSetConstantBuffers(1, 1, &m_cbItem); for (__int32 k = 0; k < laraSkin->ObjectMeshes.size(); k++) { RendererMesh* mesh = m_meshPointersToMesh[Lara.meshPtrs[k]]; for (__int32 j = firstBucket; j < lastBucket; j++) { RendererBucket* bucket = &mesh->Buckets[j]; if (bucket->Vertices.size() == 0) continue; // Draw vertices m_context->DrawIndexed(bucket->NumIndices, bucket->StartIndex, 0); m_numDrawCalls++; } } if (m_moveableObjects[ID_LARA_SKIN_JOINTS] != NULL) { RendererObject* laraSkinJoints = m_moveableObjects[ID_LARA_SKIN_JOINTS]; for (__int32 k = 0; k < laraSkinJoints->ObjectMeshes.size(); k++) { RendererMesh* mesh = laraSkinJoints->ObjectMeshes[k]; for (__int32 j = firstBucket; j < lastBucket; j++) { RendererBucket* bucket = &mesh->Buckets[j]; if (bucket->Vertices.size() == 0) continue; // Draw vertices m_context->DrawIndexed(bucket->NumIndices, bucket->StartIndex, 0); m_numDrawCalls++; } } } if (!transparent) { for (__int32 k = 0; k < laraSkin->ObjectMeshes.size(); k++) { RendererMesh* mesh = laraSkin->ObjectMeshes[k]; for (__int32 j = 0; j < NUM_BUCKETS; j++) { RendererBucket* bucket = &mesh->Buckets[j]; if (bucket->Vertices.size() == 0) continue; // Draw vertices m_context->DrawIndexed(bucket->NumIndices, bucket->StartIndex, 0); m_numDrawCalls++; } } } return true; } bool Renderer11::drawScene(bool dump) { m_timeUpdate = 0; m_timeDraw = 0; m_timeFrame = 0; m_numDrawCalls = 0; m_nextLight = 0; m_nextSprite = 0; m_nextLine3D = 0; m_strings.clear(); ViewProjection = View * Projection; // Prepare the scene to draw auto time1 = chrono::high_resolution_clock::now(); clearSceneItems(); collectRooms(); prepareLights(); updateLaraAnimations(); updateItemsAnimations(); updateEffects(); // Update animated textures every 2 frames if (GnFrameCounter % 2 == 0) updateAnimatedTextures(); auto time2 = chrono::high_resolution_clock::now(); m_timeUpdate = (chrono::duration_cast(time2 - time1)).count() / 1000000; time1 = time2; // Prepare thr ambient cube map //drawAmbientCubeMap(LaraItem->roomNumber); // Reset GPU state m_context->OMSetBlendState(m_states->Opaque(), NULL, 0xFFFFFFFF); m_context->RSSetState(m_states->CullCounterClockwise()); m_context->OMSetDepthStencilState(m_states->DepthDefault(), 0); // Clear screen m_context->ClearRenderTargetView(m_backBufferRTV, Colors::CornflowerBlue); m_context->ClearDepthStencilView(m_depthStencilView, D3D11_CLEAR_DEPTH | D3D11_CLEAR_STENCIL, 1.0f, 0); // Bind the back buffer m_context->OMSetRenderTargets(1, &m_backBufferRTV, m_depthStencilView); m_context->RSSetViewports(1, &m_viewport); // Draw stuff drawHorizonAndSky(); m_context->OMSetBlendState(m_states->Opaque(), NULL, 0xFFFFFFFF); drawRooms(false, false); drawRooms(false, true); drawStatics(false); drawLara(false); drawItems(false, false); drawItems(false, true); m_context->OMSetBlendState(m_states->Additive(), NULL, 0xFFFFFFFF); m_context->OMSetDepthStencilState(m_states->DepthRead(), 0); drawRooms(true, false); drawRooms(true, true); drawStatics(true); drawLara(true); drawItems(true, false); drawItems(true, true); m_context->OMSetBlendState(m_states->Opaque(), NULL, 0xFFFFFFFF); m_context->OMSetDepthStencilState(m_states->DepthDefault(), 0); // Draw sprites drawFires(); drawSmokes(); drawBlood(); drawSparks(); drawBubbles(); drawDrips(); drawRipples(); drawUnderwaterDust(); drawSplahes(); drawShockwaves(); drawSprites(); /* // Set shaders m_context->VSSetShader(m_vsHairs, NULL, 0); m_context->PSSetShader(m_psHairs, NULL, 0); // Set texture m_context->PSSetShaderResources(0, 1, &m_textureAtlas->ShaderResourceView); sampler = m_states->AnisotropicClamp(); m_context->PSSetSamplers(0, 1, &sampler); // Set camera matrices m_stCameraMatrices.View = View.Transpose(); m_stCameraMatrices.Projection = Projection.Transpose(); updateConstantBuffer(m_cbCameraMatrices, &m_stCameraMatrices, sizeof(CCameraMatrixBuffer)); m_context->VSSetConstantBuffers(0, 1, &m_cbCameraMatrices); if (m_moveableObjects[ID_HAIR] != NULL) { m_primitiveBatch->Begin(); m_primitiveBatch->DrawIndexed(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST, (const unsigned __int16*)m_hairIndices.data(), m_numHairIndices, m_hairVertices.data(), m_numHairVertices); m_primitiveBatch->End(); }*/ time2 = chrono::high_resolution_clock::now(); m_timeFrame = (chrono::duration_cast(time2 - time1)).count() / 1000000; time1 = time2; m_currentY = 10; ROOM_INFO* r = &Rooms[LaraItem->roomNumber]; printDebugMessage("Update time: %d", m_timeUpdate); printDebugMessage("Frame time: %d", m_timeFrame); printDebugMessage("Draw calls: %d", m_numDrawCalls); printDebugMessage("Rooms: %d", m_roomsToDraw.Size()); printDebugMessage("Items: %d", m_itemsToDraw.Size()); printDebugMessage("Statics: %d", m_staticsToDraw.Size()); printDebugMessage("Lights: %d", m_lightsToDraw.Size()); printDebugMessage("Lara.roomNumber: %d", LaraItem->roomNumber); printDebugMessage("Lara.pos: %d %d %d", LaraItem->pos.xPos, LaraItem->pos.yPos, LaraItem->pos.zPos); printDebugMessage("Room: %d %d %d %d", r->x, r->z, r->x + r->xSize * WALL_SIZE, r->z + r->ySize * WALL_SIZE); drawAllStrings(); m_swapChain->Present(0, 0); return true; } __int32 Renderer11::DumpGameScene() { drawScene(true); return 0; } __int32 Renderer11::DrawInventory() { return 0; } __int32 Renderer11::DrawPickup(__int16 objectNum) { return 0; } __int32 Renderer11::SyncRenderer() { // Sync the renderer __int32 nf = Sync(); if (nf < 2) { __int32 i = 2 - nf; nf = 2; do { while (!Sync()); i--; } while (i); } GnFrameCounter++; return nf; } bool Renderer11::PrintString(__int32 x, __int32 y, char* string, D3DCOLOR color, __int32 flags) { __int32 realX = x; __int32 realY = y; float factorX = ScreenWidth / 800.0f; float factorY = ScreenHeight / 600.0f; RECT rect = { 0, 0, 0, 0 }; // Convert the string to wstring __int32 sizeNeeded = MultiByteToWideChar(CP_UTF8, 0, string, strlen(string), NULL, 0); std::wstring wstr(sizeNeeded, 0); MultiByteToWideChar(CP_UTF8, 0, string, strlen(string), &wstr[0], sizeNeeded); // Prepare the structure for the renderer RendererStringToDraw str; str.String = wstr; str.Flags = flags; str.X = 0; str.Y = 0; str.Color = Vector3((color >> 16) & 0xFF, (color >> 8) & 0xFF, color & 0xFF); // Measure the string Vector2 size = m_gameFont->MeasureString(wstr.c_str()); if (flags & PRINTSTRING_CENTER) { __int32 width = rect.right - rect.left; rect.left = x * factorX - width / 2; rect.right = x * factorX + width / 2; rect.top += y * factorY; rect.bottom += y * factorY; } else { rect.left = x * factorX; rect.right += x * factorX; rect.top = y * factorY; rect.bottom += y * factorY; } str.X = rect.left; str.Y = rect.top; if (flags & PRINTSTRING_BLINK) { str.Color = Vector3(m_blinkColorValue, m_blinkColorValue, m_blinkColorValue); if (!(flags & PRINTSTRING_DONT_UPDATE_BLINK)) { m_blinkColorValue += m_blinkColorDirection * 16; if (m_blinkColorValue < 0) { m_blinkColorValue = 0; m_blinkColorDirection = 1; } if (m_blinkColorValue > 255) { m_blinkColorValue = 255; m_blinkColorDirection = -1; } } } m_strings.push_back(str); return true; } bool Renderer11::drawAllStrings() { m_spriteBatch->Begin(); for (__int32 i = 0; i < m_strings.size(); i++) { RendererStringToDraw* str = &m_strings[i]; // Draw shadow if needed if (str->Flags & PRINTSTRING_OUTLINE) m_gameFont->DrawString(m_spriteBatch, str->String.c_str(), Vector2(str->X + 1, str->Y + 1), Vector3(0, 0, 0)); // Draw string m_gameFont->DrawString(m_spriteBatch, str->String.c_str(), Vector2(str->X, str->Y), str->Color); } m_spriteBatch->End(); return true; } bool Renderer11::PrepareDataForTheRenderer() { m_moveableObjects = (RendererObject**)malloc(sizeof(RendererObject*) * NUM_OBJECTS); ZeroMemory(m_moveableObjects, sizeof(RendererObject*) * NUM_OBJECTS); m_spriteSequences = (RendererSpriteSequence**)malloc(sizeof(RendererSpriteSequence*) * NUM_OBJECTS); ZeroMemory(m_spriteSequences, sizeof(RendererSpriteSequence*) * NUM_OBJECTS); m_staticObjects = (RendererObject**)malloc(sizeof(RendererObject*) * NUM_STATICS); ZeroMemory(m_staticObjects, sizeof(RendererObject*) * NUM_STATICS); m_rooms = (RendererRoom**)malloc(sizeof(RendererRoom*) * 1024); ZeroMemory(m_rooms, sizeof(RendererRoom*) * 1024); // Step 0: prepare animated textures __int16 numSets = *AnimatedTextureRanges; __int16* animatedPtr = AnimatedTextureRanges; animatedPtr++; m_animatedTextureSets = (RendererAnimatedTextureSet**)malloc(sizeof(RendererAnimatedTextureSet*) * numSets); m_numAnimatedTextureSets = numSets; for (__int32 i = 0; i < numSets; i++) { RendererAnimatedTextureSet* set = new RendererAnimatedTextureSet(); __int16 numTextures = *animatedPtr + 1; animatedPtr++; set->Textures = (RendererAnimatedTexture**)malloc(sizeof(RendererAnimatedTexture) * numTextures); set->NumTextures = numTextures; for (__int32 j = 0; j < numTextures; j++) { __int16 textureId = *animatedPtr; animatedPtr++; OBJECT_TEXTURE* texture = &ObjectTextures[textureId]; __int32 tile = texture->tileAndFlag & 0x7FFF; RendererAnimatedTexture* newTexture = new RendererAnimatedTexture(); newTexture->Id = textureId; for (__int32 k = 0; k < 4; k++) { float x = (texture->vertices[k].x * 256.0f + 0.5f + GET_ATLAS_PAGE_X(tile)) / (float)TEXTURE_ATLAS_SIZE; float y = (texture->vertices[k].y * 256.0f + 0.5f + GET_ATLAS_PAGE_Y(tile)) / (float)TEXTURE_ATLAS_SIZE; newTexture->UV[k] = Vector2(x, y); } set->Textures[j] = newTexture; } m_animatedTextureSets[i] = set; } // Step 1: create the texture atlas byte* buffer = (byte*)malloc(TEXTURE_ATLAS_SIZE * TEXTURE_ATLAS_SIZE * 4); ZeroMemory(buffer, TEXTURE_ATLAS_SIZE * TEXTURE_ATLAS_SIZE * 4); __int32 blockX = 0; __int32 blockY = 0; if (g_GameFlow->GetLevel(CurrentLevel)->LaraType == LARA_DRAW_TYPE::LARA_YOUNG) { memcpy(m_laraSkinJointRemap, m_youngLaraSkinJointRemap, 15 * 32 * 2); } else { memcpy(m_laraSkinJointRemap, m_normalLaraSkinJointRemap, 15 * 32 * 2); } for (int p = 0; p < NumTexturePages; p++) { for (int y = 0; y < 256; y++) { for (int x = 0; x < 256; x++) { __int32 pixelIndex = blockY * TEXTURE_PAGE_SIZE * NUM_TEXTURE_PAGES_PER_ROW + y * 256 * NUM_TEXTURE_PAGES_PER_ROW * 4 + blockX * 256 * 4 + x * 4; __int32 oldPixelIndex = p * TEXTURE_PAGE_SIZE + y * 256 * 4 + x * 4; byte r = Texture32[oldPixelIndex]; byte g = Texture32[oldPixelIndex + 1]; byte b = Texture32[oldPixelIndex + 2]; byte a = Texture32[oldPixelIndex + 3]; buffer[pixelIndex + 2] = r; buffer[pixelIndex + 1] = g; buffer[pixelIndex + 0] = b; buffer[pixelIndex + 3] = a; } } blockX++; if (blockX == NUM_TEXTURE_PAGES_PER_ROW) { blockX = 0; blockY++; } } if (m_textureAtlas != NULL) delete m_textureAtlas; m_textureAtlas = Texture2D::LoadFromByteArray(m_device, TEXTURE_ATLAS_SIZE, TEXTURE_ATLAS_SIZE, &buffer[0]); if (m_textureAtlas == NULL) return false; free(buffer); buffer = (byte*)malloc(256 * 256 * 4); memcpy(buffer, MiscTextures + 256 * 512 * 4, 256 * 256 * 4); m_skyTexture = Texture2D::LoadFromByteArray(m_device, 256, 256, &buffer[0]); if (m_skyTexture == NULL) return false; D3DX11SaveTextureToFileA(m_context, m_skyTexture->Texture, D3DX11_IFF_PNG, "H:\\sky.png"); free(buffer); // Step 2: prepare rooms vector roomVertices; vector<__int32> roomIndices; __int32 baseRoomVertex = 0; __int32 baseRoomIndex = 0; for (__int32 i = 0; i < NumberRooms; i++) { ROOM_INFO* room = &Rooms[i]; RendererRoom* r = new RendererRoom(); r->RoomNumber = i; r->Room = room; r->AmbientLight = Vector4(room->ambient.r / 255.0f, room->ambient.g / 255.0f, room->ambient.b / 255.0f, 1.0f); r->LightsToDraw.Reserve(32); m_rooms[i] = r; if (room->NumVertices == 0) continue; __int32 lastRectangle = 0; __int32 lastTriangle = 0; tr5_room_layer* layers = (tr5_room_layer*)room->LayerOffset; for (__int32 l = 0; l < room->NumLayers; l++) { tr5_room_layer* layer = &layers[l]; if (layer->NumLayerVertices == 0) continue; byte* polygons = (byte*)layer->PolyOffset; tr5_room_vertex* vertices = (tr5_room_vertex*)layer->VerticesOffset; if (layer->NumLayerRectangles > 0) { for (int n = 0; n < layer->NumLayerRectangles; n++) { tr4_mesh_face4* poly = (tr4_mesh_face4*)polygons; // Get the real texture index and if double sided __int16 textureIndex = poly->Texture & 0x3FFF; bool doubleSided = (poly->Texture & 0x8000) >> 15; // Get the object texture OBJECT_TEXTURE* texture = &ObjectTextures[textureIndex]; __int32 tile = texture->tileAndFlag & 0x7FFF; // Create vertices RendererBucket* bucket; __int32 animatedSetIndex = getAnimatedTextureInfo(textureIndex); __int32 bucketIndex = RENDERER_BUCKET_SOLID; if (!doubleSided) { if (texture->attribute == 2) bucketIndex = RENDERER_BUCKET_TRANSPARENT; else bucketIndex = RENDERER_BUCKET_SOLID; } else { if (texture->attribute == 2) bucketIndex = RENDERER_BUCKET_TRANSPARENT_DS; else bucketIndex = RENDERER_BUCKET_SOLID_DS; } if (animatedSetIndex == -1) { bucket = &r->Buckets[bucketIndex]; } else { bucket = &r->AnimatedBuckets[bucketIndex]; } // Calculate face normal Vector3 p0 = Vector3(vertices[poly->Vertices[0]].Vertex.x, vertices[poly->Vertices[0]].Vertex.y, vertices[poly->Vertices[0]].Vertex.z); Vector3 p1 = Vector3(vertices[poly->Vertices[1]].Vertex.x, vertices[poly->Vertices[1]].Vertex.y, vertices[poly->Vertices[1]].Vertex.z); Vector3 p2 = Vector3(vertices[poly->Vertices[2]].Vertex.x, vertices[poly->Vertices[2]].Vertex.y, vertices[poly->Vertices[2]].Vertex.z); Vector3 e1 = p1 - p0; Vector3 e2 = p1 - p2; Vector3 normal = e1.Cross(e2); normal.Normalize(); __int32 baseVertices = bucket->NumVertices; for (__int32 v = 0; v < 4; v++) { RendererVertex vertex; vertex.Position.x = room->x + vertices[poly->Vertices[v]].Vertex.x; vertex.Position.y = room->y + vertices[poly->Vertices[v]].Vertex.y; vertex.Position.z = room->z + vertices[poly->Vertices[v]].Vertex.z; vertex.Normal.x = vertices[poly->Vertices[v]].Normal.x; vertex.Normal.y = vertices[poly->Vertices[v]].Normal.y; vertex.Normal.z = vertices[poly->Vertices[v]].Normal.z; vertex.UV.x = (texture->vertices[v].x * 256.0f + 0.5f + GET_ATLAS_PAGE_X(tile)) / (float)TEXTURE_ATLAS_SIZE; vertex.UV.y = (texture->vertices[v].y * 256.0f + 0.5f + GET_ATLAS_PAGE_Y(tile)) / (float)TEXTURE_ATLAS_SIZE; vertex.Color.x = ((vertices[poly->Vertices[v]].Colour >> 16) & 0xFF) / 255.0f; vertex.Color.y = ((vertices[poly->Vertices[v]].Colour >> 8) & 0xFF) / 255.0f; vertex.Color.z = ((vertices[poly->Vertices[v]].Colour >> 0) & 0xFF) / 255.0f; vertex.Color.w = 1.0f; vertex.Bone = 0; bucket->NumVertices++; bucket->Vertices.push_back(vertex); } bucket->Indices.push_back(baseVertices); bucket->Indices.push_back(baseVertices + 1); bucket->Indices.push_back(baseVertices + 3); bucket->Indices.push_back(baseVertices + 2); bucket->Indices.push_back(baseVertices + 3); bucket->Indices.push_back(baseVertices + 1); bucket->NumIndices += 6; RendererPolygon newPolygon; newPolygon.Shape = SHAPE_RECTANGLE; newPolygon.AnimatedSet = animatedSetIndex; newPolygon.TextureId = textureIndex; newPolygon.Indices[0] = baseVertices; newPolygon.Indices[1] = baseVertices + 1; newPolygon.Indices[2] = baseVertices + 2; newPolygon.Indices[3] = baseVertices + 3; bucket->Polygons.push_back(newPolygon); polygons += sizeof(tr4_mesh_face4); } } if (layer->NumLayerTriangles > 0) { for (int n = 0; n < layer->NumLayerTriangles; n++) { tr4_mesh_face3* poly = (tr4_mesh_face3*)polygons; // Get the real texture index and if double sided __int16 textureIndex = poly->Texture & 0x3FFF; bool doubleSided = (poly->Texture & 0x8000) >> 15; // Get the object texture OBJECT_TEXTURE* texture = &ObjectTextures[textureIndex]; __int32 tile = texture->tileAndFlag & 0x7FFF; // Create vertices RendererBucket* bucket; __int32 animatedSetIndex = getAnimatedTextureInfo(textureIndex); __int32 bucketIndex = RENDERER_BUCKET_SOLID; if (!doubleSided) { if (texture->attribute == 2) bucketIndex = RENDERER_BUCKET_TRANSPARENT; else bucketIndex = RENDERER_BUCKET_SOLID; } else { if (texture->attribute == 2) bucketIndex = RENDERER_BUCKET_TRANSPARENT_DS; else bucketIndex = RENDERER_BUCKET_SOLID_DS; } if (animatedSetIndex == -1) { bucket = &r->Buckets[bucketIndex]; } else { bucket = &r->AnimatedBuckets[bucketIndex]; } // Calculate face normal Vector3 p0 = Vector3(vertices[poly->Vertices[0]].Vertex.x, vertices[poly->Vertices[0]].Vertex.y, vertices[poly->Vertices[0]].Vertex.z); Vector3 p1 = Vector3(vertices[poly->Vertices[1]].Vertex.x, vertices[poly->Vertices[1]].Vertex.y, vertices[poly->Vertices[1]].Vertex.z); Vector3 p2 = Vector3(vertices[poly->Vertices[2]].Vertex.x, vertices[poly->Vertices[2]].Vertex.y, vertices[poly->Vertices[2]].Vertex.z); Vector3 e1 = p1 - p0; Vector3 e2 = p1 - p2; Vector3 normal = e1.Cross(e2); normal.Normalize(); __int32 baseVertices = bucket->NumVertices; for (__int32 v = 0; v < 3; v++) { RendererVertex vertex; vertex.Position.x = room->x + vertices[poly->Vertices[v]].Vertex.x; vertex.Position.y = room->y + vertices[poly->Vertices[v]].Vertex.y; vertex.Position.z = room->z + vertices[poly->Vertices[v]].Vertex.z; vertex.Normal.x = vertices[poly->Vertices[v]].Normal.x; vertex.Normal.y = vertices[poly->Vertices[v]].Normal.y; vertex.Normal.z = vertices[poly->Vertices[v]].Normal.z; vertex.UV.x = (texture->vertices[v].x * 256.0f + 0.5f + GET_ATLAS_PAGE_X(tile)) / (float)TEXTURE_ATLAS_SIZE; vertex.UV.y = (texture->vertices[v].y * 256.0f + 0.5f + GET_ATLAS_PAGE_Y(tile)) / (float)TEXTURE_ATLAS_SIZE; vertex.Color.x = ((vertices[poly->Vertices[v]].Colour >> 16) & 0xFF) / 255.0f; vertex.Color.y = ((vertices[poly->Vertices[v]].Colour >> 8) & 0xFF) / 255.0f; vertex.Color.z = ((vertices[poly->Vertices[v]].Colour >> 0) & 0xFF) / 255.0f; vertex.Color.w = 1.0f; vertex.Bone = 0; bucket->NumVertices++; bucket->Vertices.push_back(vertex); } bucket->Indices.push_back(baseVertices); bucket->Indices.push_back(baseVertices + 1); bucket->Indices.push_back(baseVertices + 2); bucket->NumIndices += 3; RendererPolygon newPolygon; newPolygon.Shape = SHAPE_TRIANGLE; newPolygon.AnimatedSet = animatedSetIndex; newPolygon.TextureId = textureIndex; newPolygon.Indices[0] = baseVertices; newPolygon.Indices[1] = baseVertices + 1; newPolygon.Indices[2] = baseVertices + 2; bucket->Polygons.push_back(newPolygon); polygons += sizeof(tr4_mesh_face3); } } } if (room->numLights != 0) { tr5_room_light* oldLight = room->light; for (__int32 l = 0; l < room->numLights; l++) { RendererLight light; if (oldLight->LightType == LIGHT_TYPES::LIGHT_TYPE_SUN) { light.Color = Vector4(oldLight->r, oldLight->g, oldLight->b, 1.0f); light.Direction = Vector4(oldLight->dx, oldLight->dy, oldLight->dz, 1.0f); light.Type = LIGHT_TYPES::LIGHT_TYPE_SUN; r->Lights.push_back(light); } else if (oldLight->LightType == LIGHT_TYPE_POINT) { light.Position = Vector4(oldLight->x, oldLight->y, oldLight->z, 1.0f); light.Color = Vector4(oldLight->r, oldLight->g, oldLight->b, 1.0f); light.Direction = Vector4(oldLight->dx, oldLight->dy, oldLight->dz, 1.0f); light.Intensity = 1.0f; light.In = oldLight->In; light.Out = oldLight->Out; light.Type = LIGHT_TYPE_POINT; r->Lights.push_back(light); } else if (oldLight->LightType == LIGHT_TYPE_SHADOW) { light.Position = Vector4(oldLight->x, oldLight->y, oldLight->z, 1.0f); light.Color = Vector4(oldLight->r, oldLight->g, oldLight->b, 1.0f); light.Direction = Vector4(oldLight->dx, oldLight->dy, oldLight->dz, 1.0f); light.In = oldLight->In; light.Out = oldLight->Out; light.Type = LIGHT_TYPE_SHADOW; r->Lights.push_back(light); } else if (oldLight->LightType == LIGHT_TYPE_SPOT) { light.Position = Vector4(oldLight->x, oldLight->y, oldLight->z, 1.0f); light.Color = Vector4(oldLight->r, oldLight->g, oldLight->b, 1.0f); light.Direction = Vector4(oldLight->dx, oldLight->dy, oldLight->dz, 1.0f); light.Intensity = 1.0f; light.In = oldLight->In; light.Out = oldLight->Range; light.Range = oldLight->Range; light.Type = LIGHT_TYPE_SPOT; r->Lights.push_back(light); } } } MESH_INFO* mesh = room->mesh; for (__int32 j = 0; j < room->numMeshes; j++) { RendererStatic obj; obj.Mesh = mesh; obj.RoomIndex = i; r->Statics.push_back(obj); } // Merge vertices and indices in a single list for (__int32 j = 0; j < NUM_BUCKETS; j++) { RendererBucket* bucket = &r->Buckets[j]; bucket->StartVertex = baseRoomVertex; bucket->StartIndex = baseRoomIndex; for (__int32 k = 0; k < bucket->Vertices.size(); k++) roomVertices.push_back(bucket->Vertices[k]); for (__int32 k = 0; k < bucket->Indices.size(); k++) roomIndices.push_back(baseRoomVertex + bucket->Indices[k]); baseRoomVertex += bucket->Vertices.size(); baseRoomIndex += bucket->Indices.size(); } } // Create a single vertex buffer and a single index buffer for all rooms // NOTICE: in theory, a 1,000,000 vertices scene should have a VB of 52 MB and an IB of 4 MB m_roomsVertexBuffer = VertexBuffer::Create(m_device, roomVertices.size(), roomVertices.data()); m_roomsIndexBuffer = IndexBuffer::Create(m_device, roomIndices.size(), roomIndices.data()); m_numHairVertices = 0; m_numHairIndices = 0; vector moveablesVertices; vector<__int32> moveablesIndices; __int32 baseMoveablesVertex = 0; __int32 baseMoveablesIndex = 0; // Step 3: prepare moveables for (__int32 i = 0; i < MoveablesIds.size(); i++) { __int32 objNum = MoveablesIds[i]; OBJECT_INFO* obj = &Objects[objNum]; if (obj->nmeshes > 0) { RendererObject* moveable = new RendererObject(); moveable->Id = MoveablesIds[i]; // Assign the draw routine if (objNum == ID_FLAME || objNum == ID_FLAME_EMITTER || objNum == ID_FLAME_EMITTER2 || objNum == ID_FLAME_EMITTER3 || objNum == ID_TRIGGER_TRIGGERER || objNum == ID_TIGHT_ROPE || objNum == ID_AI_AMBUSH || objNum == ID_AI_FOLLOW || objNum == ID_AI_GUARD || objNum == ID_AI_MODIFY || objNum == ID_AI_PATROL1 || objNum == ID_AI_PATROL2 || objNum == ID_AI_X1 || objNum == ID_AI_X2 || objNum == ID_DART_EMITTER || objNum == ID_HOMING_DART_EMITTER || objNum == ID_ROPE || objNum == ID_KILL_ALL_TRIGGERS || objNum == ID_EARTHQUAKE || objNum == ID_CAMERA_TARGET || objNum == ID_WATERFALLMIST || objNum == ID_SMOKE_EMITTER_BLACK || objNum == ID_SMOKE_EMITTER_WHITE) { moveable->DoNotDraw = true; } else { moveable->DoNotDraw = false; } for (__int32 j = 0; j < obj->nmeshes; j++) { // HACK: mesh pointer 0 is the placeholder for Lara's body parts and is right hand with pistols // We need to override the bone index because the engine will take mesh 0 while drawing pistols anim, // and vertices have bone index 0 and not 10 __int32 meshPtrIndex = RawMeshPointers[obj->meshIndex / 2 + j] / 2; __int32 boneIndex = (meshPtrIndex == 0 ? HAND_R : j); __int16* meshPtr = &RawMeshData[meshPtrIndex]; RendererMesh* mesh = getRendererMeshFromTrMesh(moveable, meshPtr, Meshes[obj->meshIndex + 2 * j], boneIndex, MoveablesIds[i] == ID_LARA_SKIN_JOINTS, MoveablesIds[i] == ID_HAIR); moveable->ObjectMeshes.push_back(mesh); } __int32* bone = &Bones[obj->boneIndex]; stack stack; for (int j = 0; j < obj->nmeshes; j++) { moveable->LinearizedBones.push_back(new RendererBone(j)); moveable->AnimationTransforms.push_back(Matrix::Identity); moveable->BindPoseTransforms.push_back(Matrix::Identity); } RendererBone* currentBone = moveable->LinearizedBones[0]; RendererBone* stackBone = moveable->LinearizedBones[0]; for (int mi = 0; mi < obj->nmeshes - 1; mi++) { int j = mi + 1; __int32 opcode = *(bone++); int linkX = *(bone++); int linkY = *(bone++); int linkZ = *(bone++); byte flags = opcode & 0x1C; moveable->LinearizedBones[j]->ExtraRotationFlags = flags; switch (opcode & 0x03) { case 0: moveable->LinearizedBones[j]->Parent = currentBone; moveable->LinearizedBones[j]->Translation = Vector3(linkX, linkY, linkZ); currentBone->Children.push_back(moveable->LinearizedBones[j]); currentBone = moveable->LinearizedBones[j]; break; case 1: if (stack.empty()) continue; currentBone = stack.top(); stack.pop(); moveable->LinearizedBones[j]->Parent = currentBone; moveable->LinearizedBones[j]->Translation = Vector3(linkX, linkY, linkZ); currentBone->Children.push_back(moveable->LinearizedBones[j]); currentBone = moveable->LinearizedBones[j]; break; case 2: stack.push(currentBone); moveable->LinearizedBones[j]->Translation = Vector3(linkX, linkY, linkZ); moveable->LinearizedBones[j]->Parent = currentBone; currentBone->Children.push_back(moveable->LinearizedBones[j]); currentBone = moveable->LinearizedBones[j]; break; case 3: if (stack.empty()) continue; RendererBone* theBone = stack.top(); stack.pop(); moveable->LinearizedBones[j]->Translation = Vector3(linkX, linkY, linkZ); moveable->LinearizedBones[j]->Parent = theBone; theBone->Children.push_back(moveable->LinearizedBones[j]); currentBone = moveable->LinearizedBones[j]; stack.push(theBone); break; } } for (int n = 0; n < obj->nmeshes; n++) moveable->LinearizedBones[n]->Transform = Matrix::CreateTranslation( moveable->LinearizedBones[n]->Translation.x, moveable->LinearizedBones[n]->Translation.y, moveable->LinearizedBones[n]->Translation.z); moveable->Skeleton = moveable->LinearizedBones[0]; buildHierarchy(moveable); // Fix Lara skin joints and hairs if (MoveablesIds[i] == ID_LARA_SKIN_JOINTS) { RendererObject* objSkin = m_moveableObjects[ID_LARA_SKIN]; for (__int32 j = 1; j < obj->nmeshes; j++) { RendererMesh* jointMesh = moveable->ObjectMeshes[j]; RendererBone* jointBone = moveable->LinearizedBones[j]; for (__int32 b1 = 0; b1 < NUM_BUCKETS; b1++) { RendererBucket* jointBucket = &jointMesh->Buckets[b1]; for (__int32 v1 = 0; v1 < jointBucket->Vertices.size(); v1++) { RendererVertex* jointVertex = &jointBucket->Vertices[v1]; if (jointVertex->Bone != j) { RendererMesh* skinMesh = objSkin->ObjectMeshes[jointVertex->Bone]; RendererBone* skinBone = objSkin->LinearizedBones[jointVertex->Bone]; for (__int32 b2 = 0; b2 < NUM_BUCKETS; b2++) { RendererBucket* skinBucket = &skinMesh->Buckets[b2]; for (__int32 v2 = 0; v2 < skinBucket->Vertices.size(); v2++) { RendererVertex* skinVertex = &skinBucket->Vertices[v2]; __int32 x1 = jointBucket->Vertices[v1].Position.x + jointBone->GlobalTranslation.x; __int32 y1 = jointBucket->Vertices[v1].Position.y + jointBone->GlobalTranslation.y; __int32 z1 = jointBucket->Vertices[v1].Position.z + jointBone->GlobalTranslation.z; __int32 x2 = skinBucket->Vertices[v2].Position.x + skinBone->GlobalTranslation.x; __int32 y2 = skinBucket->Vertices[v2].Position.y + skinBone->GlobalTranslation.y; __int32 z2 = skinBucket->Vertices[v2].Position.z + skinBone->GlobalTranslation.z; if (abs(x1 - x2) < 2 && abs(y1 - y2) < 2 && abs(z1 - z2) < 2) { jointVertex->Position.x = skinVertex->Position.x; jointVertex->Position.y = skinVertex->Position.y; jointVertex->Position.z = skinVertex->Position.z; } } } } } } } } if (MoveablesIds[i] == ID_HAIR) { for (__int32 j = 0; j < moveable->ObjectMeshes.size(); j++) { RendererMesh* mesh = moveable->ObjectMeshes[j]; for (__int32 n = 0; n < NUM_BUCKETS; n++) { m_numHairVertices += mesh->Buckets[n].NumVertices; m_numHairIndices += mesh->Buckets[n].NumIndices; } } m_hairVertices.clear(); m_hairIndices.clear(); RendererVertex vertex; for (__int32 m = 0; m < m_numHairVertices * 2; m++) m_hairVertices.push_back(vertex); for (__int32 m = 0; m < m_numHairIndices * 2; m++) m_hairIndices.push_back(0); } m_moveableObjects[MoveablesIds[i]] = moveable; // Merge vertices and indices in a single list for (__int32 m = 0; m < moveable->ObjectMeshes.size(); m++) { RendererMesh* msh = moveable->ObjectMeshes[m]; for (__int32 j = 0; j < NUM_BUCKETS; j++) { RendererBucket* bucket = &msh->Buckets[j]; bucket->StartVertex = baseMoveablesVertex; bucket->StartIndex = baseMoveablesIndex; for (__int32 k = 0; k < bucket->Vertices.size(); k++) moveablesVertices.push_back(bucket->Vertices[k]); for (__int32 k = 0; k < bucket->Indices.size(); k++) moveablesIndices.push_back(baseMoveablesVertex + bucket->Indices[k]); baseMoveablesVertex += bucket->Vertices.size(); baseMoveablesIndex += bucket->Indices.size(); } } } } // Create a single vertex buffer and a single index buffer for all moveables m_moveablesVertexBuffer = VertexBuffer::Create(m_device, moveablesVertices.size(), moveablesVertices.data()); m_moveablesIndexBuffer = IndexBuffer::Create(m_device, moveablesIndices.size(), moveablesIndices.data()); // Step 4: prepare static meshes vector staticsVertices; vector<__int32> staticsIndices; __int32 baseStaticsVertex = 0; __int32 baseStaticsIndex = 0; for (__int32 i = 0; i < StaticObjectsIds.size(); i++) { STATIC_INFO* obj = &StaticObjects[StaticObjectsIds[i]]; RendererObject* staticObject = new RendererObject(); staticObject->Id = StaticObjectsIds[i]; __int16* meshPtr = &RawMeshData[RawMeshPointers[obj->meshNumber / 2] / 2]; RendererMesh* mesh = getRendererMeshFromTrMesh(staticObject, meshPtr, Meshes[obj->meshNumber], 0, false, false); staticObject->ObjectMeshes.push_back(mesh); m_staticObjects[StaticObjectsIds[i]] = staticObject; // Merge vertices and indices in a single list RendererMesh* msh = staticObject->ObjectMeshes[0]; for (__int32 j = 0; j < NUM_BUCKETS; j++) { RendererBucket* bucket = &msh->Buckets[j]; bucket->StartVertex = baseStaticsVertex; bucket->StartIndex = baseStaticsIndex; for (__int32 k = 0; k < bucket->Vertices.size(); k++) staticsVertices.push_back(bucket->Vertices[k]); for (__int32 k = 0; k < bucket->Indices.size(); k++) staticsIndices.push_back(baseStaticsVertex + bucket->Indices[k]); baseStaticsVertex += bucket->Vertices.size(); baseStaticsIndex += bucket->Indices.size(); } } // Create a single vertex buffer and a single index buffer for all statics m_staticsVertexBuffer = VertexBuffer::Create(m_device, staticsVertices.size(), staticsVertices.data()); m_staticsIndexBuffer = IndexBuffer::Create(m_device, staticsIndices.size(), staticsIndices.data()); // Step 5: prepare sprites m_sprites = (RendererSprite**)malloc(sizeof(RendererSprite*) * 4); ZeroMemory(m_sprites, sizeof(RendererSprite*) * 4); for (__int32 i = 0; i < 41; i++) { SPRITE* oldSprite = &Sprites[i]; RendererSprite* sprite = new RendererSprite(); sprite->Width = (oldSprite->right - oldSprite->left)*256.0f; sprite->Height = (oldSprite->bottom - oldSprite->top)*256.0f; float left = (oldSprite->left * 256.0f + GET_ATLAS_PAGE_X(oldSprite->tile - 1)); float top = (oldSprite->top * 256.0f + GET_ATLAS_PAGE_Y(oldSprite->tile - 1)); float right = (oldSprite->right * 256.0f + GET_ATLAS_PAGE_X(oldSprite->tile - 1)); float bottom = (oldSprite->bottom * 256.0f + GET_ATLAS_PAGE_Y(oldSprite->tile - 1)); sprite->UV[0] = Vector2(left / (float)TEXTURE_ATLAS_SIZE, top / (float)TEXTURE_ATLAS_SIZE); sprite->UV[1] = Vector2(right / (float)TEXTURE_ATLAS_SIZE, top / (float)TEXTURE_ATLAS_SIZE); sprite->UV[2] = Vector2(right / (float)TEXTURE_ATLAS_SIZE, bottom / (float)TEXTURE_ATLAS_SIZE); sprite->UV[3] = Vector2(left / (float)TEXTURE_ATLAS_SIZE, bottom / (float)TEXTURE_ATLAS_SIZE); m_sprites[i] = sprite; } for (__int32 i = 0; i < MoveablesIds.size(); i++) { OBJECT_INFO* obj = &Objects[MoveablesIds[i]]; if (obj->nmeshes < 0) { __int16 numSprites = abs(obj->nmeshes); __int16 baseSprite = obj->meshIndex; RendererSpriteSequence* sequence = new RendererSpriteSequence(MoveablesIds[i], numSprites); for (__int32 j = baseSprite; j < baseSprite + numSprites; j++) { sequence->SpritesList[j - baseSprite] = m_sprites[j]; } m_spriteSequences[MoveablesIds[i]] = sequence; } } // Preallocate lists m_roomsToDraw.Reserve(NumberRooms); m_itemsToDraw.Reserve(NUM_ITEMS); m_effectsToDraw.Reserve(NUM_ITEMS); m_lightsToDraw.Reserve(16384); m_dynamicLights.Reserve(16384); m_staticsToDraw.Reserve(16384); m_spritesToDraw.Reserve(MAX_SPRITES); m_lines3DToDraw.Reserve(MAX_LINES_3D); m_spritesBuffer = (RendererSpriteToDraw*)malloc(sizeof(RendererSpriteToDraw) * MAX_SPRITES); m_lines3DBuffer = (RendererLine3DToDraw*)malloc(sizeof(RendererLine3DToDraw) * MAX_LINES_3D); return true; } ID3D11VertexShader* Renderer11::compileVertexShader(char* fileName, char* function, char* model, ID3D10Blob** bytecode) { HRESULT res; *bytecode = NULL; ID3DBlob* errors = NULL; printf("Compiling vertex shader: %s\n", fileName); res = D3DX11CompileFromFileA(fileName, NULL, NULL, function, model, D3D10_SHADER_OPTIMIZATION_LEVEL3, 0, NULL, bytecode, &errors, NULL); if (FAILED(res)) { printf("Compilation failed: %s\n", errors->GetBufferPointer()); return NULL; } ID3D11VertexShader* shader = NULL; res = m_device->CreateVertexShader((*bytecode)->GetBufferPointer(), (*bytecode)->GetBufferSize(), NULL, &shader); if (FAILED(res)) return NULL; return shader; } ID3D11PixelShader* Renderer11::compilePixelShader(char* fileName, char* function, char* model, ID3D10Blob** bytecode) { HRESULT res; *bytecode = NULL; ID3DBlob* errors = NULL; printf("Compiling pixel shader: %s\n", fileName); res = D3DX11CompileFromFileA(fileName, NULL, NULL, function, model, D3D10_SHADER_OPTIMIZATION_LEVEL3, 0, NULL, bytecode, &errors, NULL); if (FAILED(res)) { printf("Compilation failed: %s\n", errors->GetBufferPointer()); return NULL; } ID3D11PixelShader* shader = NULL; res = m_device->CreatePixelShader((*bytecode)->GetBufferPointer(), (*bytecode)->GetBufferSize(), NULL, &shader); if (FAILED(res)) return NULL; return shader; } ID3D11GeometryShader* Renderer11::compileGeometryShader(char* fileName) { HRESULT res; ID3DBlob* bytecode = NULL; ID3DBlob* errors = NULL; res = D3DX11CompileFromFileA(fileName, NULL, NULL, NULL, "gs_4_0", D3D10_SHADER_OPTIMIZATION_LEVEL3, 0, NULL, &bytecode, &errors, NULL); if (FAILED(res)) return NULL; ID3D11GeometryShader* shader = NULL; res = m_device->CreateGeometryShader(bytecode->GetBufferPointer(), bytecode->GetBufferSize(), NULL, &shader); if (FAILED(res)) return NULL; return shader; } ID3D11ComputeShader* Renderer11::compileComputeShader(char* fileName) { HRESULT res; ID3DBlob* bytecode = NULL; ID3DBlob* errors = NULL; res = D3DX11CompileFromFileA(fileName, NULL, NULL, NULL, "gs_4_0", D3D10_SHADER_OPTIMIZATION_LEVEL3, 0, NULL, &bytecode, &errors, NULL); if (FAILED(res)) return NULL; ID3D11ComputeShader* shader = NULL; res = m_device->CreateComputeShader(bytecode->GetBufferPointer(), bytecode->GetBufferSize(), NULL, &shader); if (FAILED(res)) return NULL; return shader; } void Renderer11::DrawDashBar() { } void Renderer11::DrawHealthBar(__int32 percentual) { } void Renderer11::DrawAirBar(__int32 percentual) { } void Renderer11::ClearDynamicLights() { m_dynamicLights.Clear(); } void Renderer11::AddDynamicLight(__int32 x, __int32 y, __int32 z, __int16 falloff, byte r, byte g, byte b) { if (m_nextLight >= MAX_LIGHTS) return; RendererLight* dynamicLight = &m_lights[m_nextLight++]; dynamicLight->Position = Vector4(x, y, z, 1.0f); dynamicLight->Color = Vector4(r / 255.0f, g / 255.0f, b / 255.0f, 1.0f); dynamicLight->Out = falloff * 256.0f; dynamicLight->Type = LIGHT_TYPES::LIGHT_TYPE_POINT; dynamicLight->Dynamic = true; dynamicLight->Intensity = 2.0f; m_dynamicLights.Add(dynamicLight); NumDynamics++; } void Renderer11::EnableCinematicBars(bool value) { } void Renderer11::FadeIn() { } void Renderer11::FadeOut() { } void Renderer11::DrawLoadingScreen(char* fileName) { } void Renderer11::UpdateProgress(float value) { } bool Renderer11::IsFading() { return false; } void Renderer11::GetLaraBonePosition(Vector3* pos, __int32 bone) { } bool Renderer11::ToggleFullScreen() { return true; } bool Renderer11::IsFullsScreen() { return false; } bool Renderer11::ChangeScreenResolution(__int32 width, __int32 height, __int32 frequency, bool windowed) { return true; } void Renderer11::Test() { } ID3D11Buffer* Renderer11::createConstantBuffer(__int32 size) { ID3D11Buffer* buffer; D3D11_BUFFER_DESC desc; ZeroMemory(&desc, sizeof(D3D11_BUFFER_DESC)); desc.ByteWidth = ceil(size / 16) * 16; // Constant buffer must have a size multiple of 16 bytes desc.Usage = D3D11_USAGE_DYNAMIC; desc.BindFlags = D3D11_BIND_CONSTANT_BUFFER; desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; HRESULT res = m_device->CreateBuffer(&desc, NULL, &buffer); if (FAILED(res)) return NULL; return buffer; } __int32 Renderer11::getAnimatedTextureInfo(__int16 textureId) { for (__int32 i = 0; i < m_numAnimatedTextureSets; i++) { RendererAnimatedTextureSet* set = m_animatedTextureSets[i]; for (__int32 j = 0; j < set->NumTextures; j++) { if (set->Textures[j]->Id == textureId) return i; } } return -1; } void Renderer11::initialiseHairRemaps() { memset(m_normalLaraSkinJointRemap, -1, 15 * 32 * 2); memset(m_youngLaraSkinJointRemap, -1, 15 * 32 * 2); // Normal Lara m_normalLaraSkinJointRemap[1][0] = 0; m_normalLaraSkinJointRemap[1][1] = 0; m_normalLaraSkinJointRemap[1][2] = 0; m_normalLaraSkinJointRemap[1][3] = 0; m_normalLaraSkinJointRemap[1][4] = 0; m_normalLaraSkinJointRemap[1][5] = 0; m_normalLaraSkinJointRemap[2][0] = 1; m_normalLaraSkinJointRemap[2][1] = 1; m_normalLaraSkinJointRemap[2][2] = 1; m_normalLaraSkinJointRemap[2][3] = 1; m_normalLaraSkinJointRemap[2][4] = 1; m_normalLaraSkinJointRemap[3][4] = 2; m_normalLaraSkinJointRemap[3][5] = 2; m_normalLaraSkinJointRemap[3][6] = 2; m_normalLaraSkinJointRemap[3][7] = 2; m_normalLaraSkinJointRemap[4][0] = 0; m_normalLaraSkinJointRemap[4][1] = 0; m_normalLaraSkinJointRemap[4][2] = 0; m_normalLaraSkinJointRemap[4][3] = 0; m_normalLaraSkinJointRemap[4][4] = 0; m_normalLaraSkinJointRemap[4][5] = 0; m_normalLaraSkinJointRemap[5][0] = 4; m_normalLaraSkinJointRemap[5][1] = 4; m_normalLaraSkinJointRemap[5][2] = 4; m_normalLaraSkinJointRemap[5][3] = 4; m_normalLaraSkinJointRemap[5][4] = 4; m_normalLaraSkinJointRemap[6][4] = 5; m_normalLaraSkinJointRemap[6][5] = 5; m_normalLaraSkinJointRemap[6][6] = 5; m_normalLaraSkinJointRemap[6][7] = 5; m_normalLaraSkinJointRemap[7][0] = 0; m_normalLaraSkinJointRemap[7][1] = 0; m_normalLaraSkinJointRemap[7][2] = 0; m_normalLaraSkinJointRemap[7][3] = 0; m_normalLaraSkinJointRemap[7][4] = 0; m_normalLaraSkinJointRemap[7][5] = 0; m_normalLaraSkinJointRemap[8][6] = 7; m_normalLaraSkinJointRemap[8][7] = 7; m_normalLaraSkinJointRemap[8][8] = 7; m_normalLaraSkinJointRemap[8][9] = 7; m_normalLaraSkinJointRemap[8][10] = 7; m_normalLaraSkinJointRemap[8][11] = 7; m_normalLaraSkinJointRemap[9][5] = 8; m_normalLaraSkinJointRemap[9][6] = 8; m_normalLaraSkinJointRemap[9][7] = 8; m_normalLaraSkinJointRemap[9][8] = 8; m_normalLaraSkinJointRemap[9][9] = 8; m_normalLaraSkinJointRemap[10][0] = 9; m_normalLaraSkinJointRemap[10][1] = 9; m_normalLaraSkinJointRemap[10][2] = 9; m_normalLaraSkinJointRemap[10][3] = 9; m_normalLaraSkinJointRemap[10][4] = 9; m_normalLaraSkinJointRemap[11][6] = 7; m_normalLaraSkinJointRemap[11][7] = 7; m_normalLaraSkinJointRemap[11][8] = 7; m_normalLaraSkinJointRemap[11][9] = 7; m_normalLaraSkinJointRemap[11][10] = 7; m_normalLaraSkinJointRemap[11][11] = 7; m_normalLaraSkinJointRemap[12][5] = 11; m_normalLaraSkinJointRemap[12][6] = 11; m_normalLaraSkinJointRemap[12][7] = 11; m_normalLaraSkinJointRemap[12][8] = 11; m_normalLaraSkinJointRemap[12][9] = 11; m_normalLaraSkinJointRemap[13][0] = 12; m_normalLaraSkinJointRemap[13][1] = 12; m_normalLaraSkinJointRemap[13][2] = 12; m_normalLaraSkinJointRemap[13][3] = 12; m_normalLaraSkinJointRemap[13][4] = 12; m_normalLaraSkinJointRemap[14][6] = 7; m_normalLaraSkinJointRemap[14][7] = 7; m_normalLaraSkinJointRemap[14][8] = 7; m_normalLaraSkinJointRemap[14][9] = 7; m_normalLaraSkinJointRemap[14][10] = 7; m_normalLaraSkinJointRemap[14][11] = 7; // Young Lara m_youngLaraSkinJointRemap[1][0] = 0; // Left up leg m_youngLaraSkinJointRemap[1][1] = 0; m_youngLaraSkinJointRemap[1][2] = 0; m_youngLaraSkinJointRemap[1][3] = 0; m_youngLaraSkinJointRemap[1][4] = 0; m_youngLaraSkinJointRemap[1][5] = 0; m_youngLaraSkinJointRemap[2][0] = 1; // Bottom left leg m_youngLaraSkinJointRemap[2][1] = 1; m_youngLaraSkinJointRemap[2][2] = 1; m_youngLaraSkinJointRemap[2][3] = 1; m_youngLaraSkinJointRemap[2][4] = 1; m_youngLaraSkinJointRemap[3][0] = 2; // Left foot m_youngLaraSkinJointRemap[3][1] = 2; m_youngLaraSkinJointRemap[3][2] = 2; m_youngLaraSkinJointRemap[3][3] = 2; m_youngLaraSkinJointRemap[4][6] = 0; // Right upper leg m_youngLaraSkinJointRemap[4][7] = 0; m_youngLaraSkinJointRemap[4][8] = 0; m_youngLaraSkinJointRemap[4][9] = 0; m_youngLaraSkinJointRemap[4][10] = 0; m_youngLaraSkinJointRemap[4][11] = 0; m_youngLaraSkinJointRemap[5][0] = 4; // Right bottom leg m_youngLaraSkinJointRemap[5][1] = 4; m_youngLaraSkinJointRemap[5][2] = 4; m_youngLaraSkinJointRemap[5][3] = 4; m_youngLaraSkinJointRemap[5][4] = 4; m_youngLaraSkinJointRemap[6][0] = 5; // Right foot m_youngLaraSkinJointRemap[6][1] = 5; m_youngLaraSkinJointRemap[6][2] = 5; m_youngLaraSkinJointRemap[6][3] = 5; m_youngLaraSkinJointRemap[7][0] = 0; // Torso m_youngLaraSkinJointRemap[7][1] = 0; m_youngLaraSkinJointRemap[7][2] = 0; m_youngLaraSkinJointRemap[7][3] = 0; m_youngLaraSkinJointRemap[7][4] = 0; m_youngLaraSkinJointRemap[7][5] = 0; m_youngLaraSkinJointRemap[8][0] = 7; // Left upper arm m_youngLaraSkinJointRemap[8][1] = 7; m_youngLaraSkinJointRemap[8][2] = 7; m_youngLaraSkinJointRemap[8][3] = 7; m_youngLaraSkinJointRemap[8][4] = 7; m_youngLaraSkinJointRemap[8][5] = 7; m_youngLaraSkinJointRemap[9][5] = 8; // Left bottom arm m_youngLaraSkinJointRemap[9][6] = 8; m_youngLaraSkinJointRemap[9][7] = 8; m_youngLaraSkinJointRemap[9][8] = 8; m_youngLaraSkinJointRemap[9][9] = 8; m_youngLaraSkinJointRemap[10][0] = 9; // Left hand m_youngLaraSkinJointRemap[10][1] = 9; m_youngLaraSkinJointRemap[10][2] = 9; m_youngLaraSkinJointRemap[10][3] = 9; m_youngLaraSkinJointRemap[10][4] = 9; m_youngLaraSkinJointRemap[11][0] = 7; // Right upper arm m_youngLaraSkinJointRemap[11][1] = 7; m_youngLaraSkinJointRemap[11][2] = 7; m_youngLaraSkinJointRemap[11][3] = 7; m_youngLaraSkinJointRemap[11][4] = 7; m_youngLaraSkinJointRemap[11][5] = 7; m_youngLaraSkinJointRemap[12][5] = 11; // Right low arm m_youngLaraSkinJointRemap[12][6] = 11; m_youngLaraSkinJointRemap[12][7] = 11; m_youngLaraSkinJointRemap[12][8] = 11; m_youngLaraSkinJointRemap[12][9] = 11; m_youngLaraSkinJointRemap[13][0] = 12; // Right arm m_youngLaraSkinJointRemap[13][1] = 12; m_youngLaraSkinJointRemap[13][2] = 12; m_youngLaraSkinJointRemap[13][3] = 12; m_youngLaraSkinJointRemap[13][4] = 12; m_youngLaraSkinJointRemap[14][0] = 7; // Head m_youngLaraSkinJointRemap[14][1] = 7; m_youngLaraSkinJointRemap[14][2] = 7; m_youngLaraSkinJointRemap[14][3] = 7; m_youngLaraSkinJointRemap[14][4] = 7; m_youngLaraSkinJointRemap[14][5] = 7; } void Renderer11::getVisibleRooms(int from, int to, Vector4* viewPort, bool water, int count) { // Avoid allocations, 1024 should be fine RendererRoomNode nodes[1024]; __int32 nextNode = 0; // Avoid reallocations, 1024 should be fine RendererRoomNode* stack[1024]; __int32 stackDepth = 0; RendererRoomNode* node = &nodes[nextNode++]; node->To = to; node->From = -1; // Push stack[stackDepth++] = node; while (stackDepth > 0) { // Pop node = stack[--stackDepth]; if (m_rooms[node->To]->Visited) continue; ROOM_INFO* room = &Rooms[node->To]; Vector3 roomCentre = Vector3(room->x + room->xSize * WALL_SIZE / 2.0f, (room->RoomYTop + room->RoomYBottom) / 2.0f, room->z + room->ySize * WALL_SIZE / 2.0f); Vector3 laraPosition = Vector3(Camera.pos.x, Camera.pos.y, Camera.pos.z); m_rooms[node->To]->Distance = (roomCentre - laraPosition).Length(); m_rooms[node->To]->Visited = true; m_roomsToDraw.Add(m_rooms[node->To]); collectItems(node->To); collectStatics(node->To); collectEffects(node->To); collectLights(node->To); Vector4 clipPort; __int16 numDoors = *(room->door); if (numDoors) { __int16* door = room->door + 1; for (int i = 0; i < numDoors; i++) { __int16 adjoiningRoom = *(door); if (node->From != adjoiningRoom && checkPortal(node->To, door, viewPort, &node->ClipPort)) { RendererRoomNode* childNode = &nodes[nextNode++]; childNode->From = node->To; childNode->To = adjoiningRoom; // Push stack[stackDepth++] = childNode; } door += 16; } } } } bool Renderer11::checkPortal(__int16 roomIndex, __int16* portal, Vector4* viewPort, Vector4* clipPort) { ROOM_INFO* room = &Rooms[roomIndex]; Vector3 n = Vector3(*(portal + 1), *(portal + 2), *(portal + 3)); Vector3 v = Vector3(Camera.pos.x - (room->x + *(portal + 4)), Camera.pos.y - (room->y + *(portal + 5)), Camera.pos.z - (room->z + *(portal + 6))); if (n.Dot(v) <= 0.0f) return false; int zClip = 0; Vector4 p[4]; clipPort->x = FLT_MAX; clipPort->y = FLT_MAX; clipPort->z = FLT_MIN; clipPort->w = FLT_MIN; for (int i = 0; i < 4; i++) { Vector4 tmp = Vector4(*(portal + 4 + 3 * i) + room->x, *(portal + 4 + 3 * i + 1) + room->y, *(portal + 4 + 3 * i + 2) + room->z, 1.0f); Vector4::Transform(tmp, ViewProjection, p[i]); if (p[i].w > 0.0f) { p[i].x *= (1.0f / p[i].w); p[i].y *= (1.0f / p[i].w); p[i].z *= (1.0f / p[i].w); clipPort->x = min(clipPort->x, p[i].x); clipPort->y = min(clipPort->y, p[i].y); clipPort->z = max(clipPort->z, p[i].x); clipPort->w = max(clipPort->w, p[i].y); } else zClip++; } if (zClip == 4) return false; if (zClip > 0) { for (int i = 0; i < 4; i++) { Vector4 a = p[i]; Vector4 b = p[(i + 1) % 4]; if ((a.w > 0.0f) ^ (b.w > 0.0f)) { if (a.x < 0.0f && b.x < 0.0f) clipPort->x = -1.0f; else if (a.x > 0.0f && b.x > 0.0f) clipPort->z = 1.0f; else { clipPort->x = -1.0f; clipPort->z = 1.0f; } if (a.y < 0.0f && b.y < 0.0f) clipPort->y = -1.0f; else if (a.y > 0.0f && b.y > 0.0f) clipPort->w = 1.0f; else { clipPort->y = -1.0f; clipPort->w = 1.0f; } } } } if (clipPort->x > viewPort->z || clipPort->y > viewPort->w || clipPort->z < viewPort->x || clipPort->w < viewPort->y) return false; clipPort->x = max(clipPort->x, viewPort->x); clipPort->y = max(clipPort->y, viewPort->y); clipPort->z = min(clipPort->z, viewPort->z); clipPort->w = min(clipPort->w, viewPort->w); return true; } void Renderer11::collectRooms() { __int16 baseRoomIndex = Camera.pos.roomNumber; for (__int32 i = 0; i < NumberRooms; i++) { m_rooms[i]->Visited = false; m_rooms[i]->LightsToDraw.Clear(); } Vector4 vp = Vector4(-1.0f, -1.0f, 1.0f, 1.0f); getVisibleRooms(-1, baseRoomIndex, &vp, false, 0); } inline void Renderer11::collectItems(__int16 roomNumber) { RendererRoom* room = m_rooms[roomNumber]; if (room == NULL) return; ROOM_INFO* r = room->Room; __int16 itemNum = NO_ITEM; for (itemNum = r->itemNumber; itemNum != NO_ITEM; itemNum = Items[itemNum].nextItem) { ITEM_INFO* item = &Items[itemNum]; if (item->objectNumber == ID_LARA && itemNum == Items[itemNum].nextItem) break; if (item->objectNumber == ID_LARA) continue; if (item->status == ITEM_DEACTIVATED || item->status == ITEM_INVISIBLE) continue; //if (m_moveableObjects.find(item->objectNumber) == m_moveableObjects.end()) if (m_moveableObjects[item->objectNumber] == NULL) continue; RendererItem* newItem = &m_items[itemNum]; newItem->Item = item; newItem->Id = itemNum; newItem->NumMeshes = Objects[item->objectNumber].nmeshes; newItem->World = Matrix::CreateFromYawPitchRoll(TR_ANGLE_TO_RAD(item->pos.yPos), TR_ANGLE_TO_RAD(item->pos.xPos), TR_ANGLE_TO_RAD(item->pos.zPos)) * Matrix::CreateTranslation(item->pos.xPos, item->pos.yPos, item->pos.zPos); m_itemsToDraw.Add(newItem); } } inline void Renderer11::collectStatics(__int16 roomNumber) { RendererRoom* room = m_rooms[roomNumber]; if (room == NULL) return; ROOM_INFO* r = room->Room; if (r->numMeshes <= 0) return; MESH_INFO* mesh = r->mesh; __int32 numStatics = room->Statics.size(); for (__int32 i = 0; i < numStatics; i++) { RendererStatic* newStatic = &room->Statics[i]; newStatic->Mesh = mesh; newStatic->RoomIndex = roomNumber; newStatic->World = Matrix::CreateRotationY(TR_ANGLE_TO_RAD(mesh->yRot)) * Matrix::CreateTranslation(mesh->x, mesh->y, mesh->z); m_staticsToDraw.Add(newStatic); mesh++; } } inline void Renderer11::collectLights(__int16 roomNumber) { RendererRoom* room = m_rooms[roomNumber]; if (room == NULL) return; ROOM_INFO* r = room->Room; if (r->numLights <= 0) return; __int32 numLights = room->Lights.size(); for (__int32 j = 0; j < numLights; j++) { Vector3 laraPos = Vector3(LaraItem->pos.xPos, LaraItem->pos.yPos, LaraItem->pos.zPos); Vector3 lightPos = Vector3(room->Lights[j].Position.x, room->Lights[j].Position.y, room->Lights[j].Position.z); // Collect only lights nearer than 20 sectors if ((laraPos - lightPos).Length() >= 20 * WALL_SIZE) continue; // Check only lights different from sun /*if (room->Lights[j]->Type != LIGHT_TYPES::LIGHT_TYPE_SUN) { // Now check if lights are touching items bool isTouchingItem = false; for (__int32 k = 0; k < m_itemsToDraw.size(); k++) { Vector3 itemPos = Vector3(m_itemsToDraw[k]->Item->pos.xPos, m_itemsToDraw[k]->Item->pos.yPos, m_itemsToDraw[k]->Item->pos.zPos); float distance = D3DXVec3Length(&(itemPos - lightPos)); if (room->Lights[j]->Type == LIGHT_TYPES::LIGHT_TYPE_SPOT) { if (distance < room->Lights[j]->Range) { isTouchingItem = true; break; } } else { if (distance < room->Lights[j]->Out) { isTouchingItem = true; break; } } } // If the light is not touching an item, then discard it if (!isTouchingItem) continue; }*/ RendererLight* light = &room->Lights[j]; m_lightsToDraw.Add(light); } // Collect dynamic lights for (__int32 i = 0; i < m_dynamicLights.Size(); i++) { RendererLight* light = m_dynamicLights[i]; float left = r->x + WALL_SIZE; float bottom = r->z + WALL_SIZE; float right = r->x + (r->xSize - 1) * WALL_SIZE; float top = r->z + (r->ySize - 1) * WALL_SIZE; float closestX = light->Position.x; if (closestX < left) closestX = left; else if (closestX > right) closestX = right; float closestZ = light->Position.z; if (closestZ < bottom) closestZ = bottom; else if (closestZ > top) closestZ = top; // Calculate the distance between the circle's center and this closest point float distanceX = light->Position.x - closestX; float distanceY = light->Position.z - closestZ; // If the distance is less than the circle's radius, an intersection occurs float distanceSquared = (distanceX * distanceX) + (distanceY * distanceY); if (distanceSquared < SQUARE(light->Out)) room->LightsToDraw.Add(light); } } bool Renderer11::sphereBoxIntersection(Vector3 boxMin, Vector3 boxMax, Vector3 sphereCentre, float sphereRadius) { //Vector3 closestPointInAabb = Vector3::Min(Vector3::Max(sphereCentre, boxMin), boxMax); //double distanceSquared = (closestPointInAabb - sphereCentre).LengthSquared(); //return (distanceSquared < (sphereRadius * sphereRadius)); /*float x = max(boxMin.x, min(sphereCentre.x, boxMax.x)); float y = max(boxMin.y, min(sphereCentre.y, boxMax.y)); float z = max(boxMin.z, min(sphereCentre.z, boxMax.z)); float distance = sqrt((x - sphereCentre.x) * (x - sphereCentre.x) + (y - sphereCentre.y) * (y - sphereCentre.y) + (z - sphereCentre.z) * (z - sphereCentre.z)); return (distance < sphereRadius);*/ return 0; } void Renderer11::prepareLights() { // Add dynamic lights for (__int32 i = 0; i < m_dynamicLights.Size(); i++) m_lightsToDraw.Add(m_dynamicLights[i]); // Now I have a list full of draw. Let's sort them. //std::sort(m_lightsToDraw.begin(), m_lightsToDraw.end(), SortLightsFunction); //m_lightsToDraw.Sort(SortLightsFunction); // Let's draw first 32 lights //if (m_lightsToDraw.size() > 32) // m_lightsToDraw.resize(32); // Now try to search for a shadow caster, using Lara as reference RendererRoom* room = m_rooms[LaraItem->roomNumber]; // Search for the brightest light. We do a simple version of the classic calculation done in pixel shader. RendererLight* brightestLight = NULL; float brightest = 0.0f; // Try room lights if (room->Lights.size() != 0) { for (__int32 j = 0; j < room->Lights.size(); j++) { RendererLight* light = &room->Lights[j]; Vector4 itemPos = Vector4(LaraItem->pos.xPos, LaraItem->pos.yPos, LaraItem->pos.zPos, 1.0f); Vector4 lightVector = itemPos - light->Position; float distance = lightVector.Length(); lightVector.Normalize(); float intensity; float attenuation; float angle; float d; float attenuationRange; float attenuationAngle; switch (light->Type) { case LIGHT_TYPES::LIGHT_TYPE_POINT: if (distance > light->Out || light->Out < 2048.0f) continue; attenuation = 1.0f - distance / light->Out; intensity = max(0.0f, attenuation * (light->Color.x + light->Color.y + light->Color.z) / 3.0f); if (intensity >= brightest) { brightest = intensity; brightestLight = light; } break; case LIGHT_TYPES::LIGHT_TYPE_SPOT: if (distance > light->Range) continue; attenuation = 1.0f - distance / light->Range; intensity = max(0.0f, attenuation * (light->Color.x + light->Color.y + light->Color.z) / 3.0f); if (intensity >= brightest) { brightest = intensity; brightestLight = light; } break; } } } // If the brightest light is found, then fill the data structure. We ignore for now dynamic lights for shadows. m_shadowLight = brightestLight; } inline void Renderer11::collectEffects(__int16 roomNumber) { RendererRoom* room = m_rooms[roomNumber]; if (room == NULL) return; ROOM_INFO* r = room->Room; __int16 fxNum = NO_ITEM; for (fxNum = r->fxNumber; fxNum != NO_ITEM; fxNum = Effects[fxNum].nextFx) { FX_INFO* fx = &Effects[fxNum]; if (fx->objectNumber < 0) continue; RendererEffect* newEffect = &m_effects[fxNum]; newEffect->Effect = fx; newEffect->Id = fxNum; newEffect->World = Matrix::CreateTranslation(fx->pos.xPos, fx->pos.yPos, fx->pos.zPos); m_effectsToDraw.Add(newEffect); } } RendererMesh* Renderer11::getRendererMeshFromTrMesh(RendererObject* obj, __int16* meshPtr, __int16* refMeshPtr, __int16 boneIndex, __int32 isJoints, __int32 isHairs) { RendererMesh* mesh = new RendererMesh(); __int16* basePtr = meshPtr; __int16 cx = *meshPtr++; __int16 cy = *meshPtr++; __int16 cz = *meshPtr++; __int16 r1 = *meshPtr++; __int16 r2 = *meshPtr++; __int16 numVertices = *meshPtr++; VECTOR* vertices = (VECTOR*)malloc(sizeof(VECTOR) * numVertices); for (__int32 v = 0; v < numVertices; v++) { __int16 x = *meshPtr++; __int16 y = *meshPtr++; __int16 z = *meshPtr++; vertices[v].vx = x; vertices[v].vy = y; vertices[v].vz = z; mesh->Positions.push_back(Vector3(x, y, z)); } __int16 numNormals = *meshPtr++; VECTOR* normals = NULL; __int16* colors = NULL; if (numNormals > 0) { normals = (VECTOR*)malloc(sizeof(VECTOR) * numNormals); for (__int32 v = 0; v < numNormals; v++) { __int16 x = *meshPtr++; __int16 y = *meshPtr++; __int16 z = *meshPtr++; normals[v].vx = x; normals[v].vy = y; normals[v].vz = z; } } else { __int16 numLights = -numNormals; colors = (__int16*)malloc(sizeof(__int16) * numLights); for (__int32 v = 0; v < numLights; v++) { colors[v] = *meshPtr++; } } __int16 numRectangles = *meshPtr++; for (__int32 r = 0; r < numRectangles; r++) { __int16 v1 = *meshPtr++; __int16 v2 = *meshPtr++; __int16 v3 = *meshPtr++; __int16 v4 = *meshPtr++; __int16 textureId = *meshPtr++; __int16 effects = *meshPtr++; __int16 indices[4] = { v1,v2,v3,v4 }; __int16 textureIndex = textureId & 0x7FFF; bool doubleSided = (textureId & 0x8000) >> 15; // Get the object texture OBJECT_TEXTURE* texture = &ObjectTextures[textureIndex]; __int32 tile = texture->tileAndFlag & 0x7FFF; // Create vertices RendererBucket* bucket; __int32 bucketIndex = RENDERER_BUCKET_SOLID; if (!doubleSided) { if (texture->attribute == 2 || (effects & 1)) bucketIndex = RENDERER_BUCKET_TRANSPARENT; else bucketIndex = RENDERER_BUCKET_SOLID; } else { if (texture->attribute == 2 || (effects & 1)) bucketIndex = RENDERER_BUCKET_TRANSPARENT_DS; else bucketIndex = RENDERER_BUCKET_SOLID_DS; } // ColAddHorizon special handling if (obj->Id == ID_HORIZON && g_GameFlow->GetLevel(CurrentLevel)->ColAddHorizon) { if (texture->attribute == 2 || (effects & 1)) bucketIndex = RENDERER_BUCKET_TRANSPARENT; else bucketIndex = RENDERER_BUCKET_SOLID; } bucket = &mesh->Buckets[bucketIndex]; obj->HasDataInBucket[bucketIndex] = true; __int32 baseVertices = bucket->NumVertices; for (__int32 v = 0; v < 4; v++) { RendererVertex vertex; vertex.Position.x = vertices[indices[v]].vx; vertex.Position.y = vertices[indices[v]].vy; vertex.Position.z = vertices[indices[v]].vz; if (numNormals > 0) { vertex.Normal.x = normals[indices[v]].vx / 16300.0f; vertex.Normal.y = normals[indices[v]].vy / 16300.0f; vertex.Normal.z = normals[indices[v]].vz / 16300.0f; } vertex.UV.x = (texture->vertices[v].x * 256.0f + 0.5f + GET_ATLAS_PAGE_X(tile)) / (float)TEXTURE_ATLAS_SIZE; vertex.UV.y = (texture->vertices[v].y * 256.0f + 0.5f + GET_ATLAS_PAGE_Y(tile)) / (float)TEXTURE_ATLAS_SIZE; vertex.Bone = boneIndex; if (isJoints && boneIndex != 0 && m_laraSkinJointRemap[boneIndex][indices[v]] != -1) vertex.Bone = m_laraSkinJointRemap[boneIndex][indices[v]]; if (isHairs) vertex.Bone = indices[v]; if (colors == NULL) { vertex.Color = Vector4::One * 0.5f; } else { __int16 shade = colors[indices[v]]; shade = (255 - shade * 255 / 8191) & 0xFF; vertex.Color = Vector4(shade / 255.0f, shade / 255.0f, shade / 255.0f, 1.0f); } bucket->NumVertices++; bucket->Vertices.push_back(vertex); } bucket->Indices.push_back(baseVertices); bucket->Indices.push_back(baseVertices + 1); bucket->Indices.push_back(baseVertices + 3); bucket->Indices.push_back(baseVertices + 2); bucket->Indices.push_back(baseVertices + 3); bucket->Indices.push_back(baseVertices + 1); bucket->NumIndices += 6; RendererPolygon newPolygon; newPolygon.Shape = SHAPE_RECTANGLE; newPolygon.Indices[0] = baseVertices; newPolygon.Indices[1] = baseVertices + 1; newPolygon.Indices[2] = baseVertices + 2; newPolygon.Indices[3] = baseVertices + 3; bucket->Polygons.push_back(newPolygon); } __int16 numTriangles = *meshPtr++; for (__int32 r = 0; r < numTriangles; r++) { __int16 v1 = *meshPtr++; __int16 v2 = *meshPtr++; __int16 v3 = *meshPtr++; __int16 textureId = *meshPtr++; __int16 effects = *meshPtr++; __int16 indices[3] = { v1,v2,v3 }; __int16 textureIndex = textureId & 0x7FFF; bool doubleSided = (textureId & 0x8000) >> 15; // Get the object texture OBJECT_TEXTURE* texture = &ObjectTextures[textureIndex]; __int32 tile = texture->tileAndFlag & 0x7FFF; // Create vertices RendererBucket* bucket; __int32 bucketIndex = RENDERER_BUCKET_SOLID; if (!doubleSided) { if (texture->attribute == 2 || (effects & 1)) bucketIndex = RENDERER_BUCKET_TRANSPARENT; else bucketIndex = RENDERER_BUCKET_SOLID; } else { if (texture->attribute == 2 || (effects & 1)) bucketIndex = RENDERER_BUCKET_TRANSPARENT_DS; else bucketIndex = RENDERER_BUCKET_SOLID_DS; } bucket = &mesh->Buckets[bucketIndex]; obj->HasDataInBucket[bucketIndex] = true; __int32 baseVertices = bucket->NumVertices; for (__int32 v = 0; v < 3; v++) { RendererVertex vertex; vertex.Position.x = vertices[indices[v]].vx; vertex.Position.y = vertices[indices[v]].vy; vertex.Position.z = vertices[indices[v]].vz; if (numNormals > 0) { vertex.Normal.x = normals[indices[v]].vx / 16300.0f; vertex.Normal.y = normals[indices[v]].vy / 16300.0f; vertex.Normal.z = normals[indices[v]].vz / 16300.0f; } vertex.UV.x = (texture->vertices[v].x * 256.0f + 0.5f + GET_ATLAS_PAGE_X(tile)) / (float)TEXTURE_ATLAS_SIZE; vertex.UV.y = (texture->vertices[v].y * 256.0f + 0.5f + GET_ATLAS_PAGE_Y(tile)) / (float)TEXTURE_ATLAS_SIZE; vertex.Bone = boneIndex; if (isJoints && boneIndex != 0 && m_laraSkinJointRemap[boneIndex][indices[v]] != -1) vertex.Bone = m_laraSkinJointRemap[boneIndex][indices[v]]; if (isHairs) vertex.Bone = indices[v]; if (colors == NULL) { vertex.Color = Vector4::One * 0.5f; } else { __int16 shade = colors[indices[v]]; shade = (255 - shade * 255 / 8191) & 0xFF; vertex.Color = Vector4(shade / 255.0f, shade / 255.0f, shade / 255.0f, 1.0f); } bucket->NumVertices++; bucket->Vertices.push_back(vertex); } bucket->Indices.push_back(baseVertices); bucket->Indices.push_back(baseVertices + 1); bucket->Indices.push_back(baseVertices + 2); bucket->NumIndices += 3; RendererPolygon newPolygon; newPolygon.Shape = SHAPE_TRIANGLE; newPolygon.Indices[0] = baseVertices; newPolygon.Indices[1] = baseVertices + 1; newPolygon.Indices[2] = baseVertices + 2; bucket->Polygons.push_back(newPolygon); } free(vertices); if (normals != NULL) free(normals); if (colors != NULL) free(colors); if (m_meshPointersToMesh.find(refMeshPtr) == m_meshPointersToMesh.end()) m_meshPointersToMesh.insert(pair<__int16*, RendererMesh*>(refMeshPtr, mesh)); return mesh; } void Renderer11::buildHierarchyRecursive(RendererObject* obj, RendererBone* node, RendererBone* parentNode) { node->GlobalTransform = node->Transform * parentNode->GlobalTransform; obj->BindPoseTransforms[node->Index] = node->GlobalTransform; obj->Skeleton->GlobalTranslation = Vector3(0.0f, 0.0f, 0.0f); node->GlobalTranslation = node->Translation + parentNode->GlobalTranslation; for (int j = 0; j < node->Children.size(); j++) { buildHierarchyRecursive(obj, node->Children[j], node); } } void Renderer11::buildHierarchy(RendererObject* obj) { obj->Skeleton->GlobalTransform = obj->Skeleton->Transform; obj->BindPoseTransforms[obj->Skeleton->Index] = obj->Skeleton->GlobalTransform; obj->Skeleton->GlobalTranslation = Vector3(0.0f, 0.0f, 0.0f); for (int j = 0; j < obj->Skeleton->Children.size(); j++) { buildHierarchyRecursive(obj, obj->Skeleton->Children[j], obj->Skeleton); } } void Renderer11::fromTrAngle(Matrix* matrix, __int16* frameptr, __int32 index) { __int16* ptr = &frameptr[0]; ptr += 9; for (int i = 0; i < index; i++) { ptr += ((*ptr & 0xc000) == 0 ? 2 : 1); } int rot0 = *ptr++; int frameMode = (rot0 & 0xc000); int rot1; int rotX; int rotY; int rotZ; switch (frameMode) { case 0: rot1 = *ptr++; rotX = ((rot0 & 0x3ff0) >> 4); rotY = (((rot1 & 0xfc00) >> 10) | ((rot0 & 0xf) << 6) & 0x3ff); rotZ = ((rot1) & 0x3ff); *matrix = Matrix::CreateFromYawPitchRoll(rotY* (360.0f / 1024.0f) * RADIAN, rotX* (360.0f / 1024.0f) * RADIAN, rotZ* (360.0f / 1024.0f) * RADIAN); break; case 0x4000: *matrix = Matrix::CreateRotationX((rot0 & 0xfff)* (360.0f / 4096.0f) * RADIAN); break; case 0x8000: *matrix = Matrix::CreateRotationY((rot0 & 0xfff)* (360.0f / 4096.0f) * RADIAN); break; case 0xc000: *matrix = Matrix::CreateRotationZ((rot0 & 0xfff)* (360.0f / 4096.0f) * RADIAN); break; } } bool Renderer11::updateConstantBuffer(ID3D11Buffer* buffer, void* data, __int32 size) { HRESULT res; D3D11_MAPPED_SUBRESOURCE mappedResource; // Lock the constant buffer so it can be written to. res = m_context->Map(buffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource); if (FAILED(res)) return false; // Get a pointer to the data in the constant buffer. char* dataPtr = reinterpret_cast(mappedResource.pData); memcpy(dataPtr, data, size); // Unlock the constant buffer. m_context->Unmap(buffer, 0); return true; } void Renderer11::updateItemsAnimations() { Matrix translation; Matrix rotation; __int32 numItems = m_itemsToDraw.Size(); for (__int32 i = 0; i < numItems; i++) { RendererItem* itemToDraw = m_itemsToDraw[i]; ITEM_INFO* item = itemToDraw->Item; CREATURE_INFO* creature = (CREATURE_INFO*)item->data; // Lara has her own routine if (item->objectNumber == ID_LARA) continue; OBJECT_INFO* obj = &Objects[item->objectNumber]; RendererObject* moveableObj = m_moveableObjects[item->objectNumber]; // Update animation matrices if (obj->animIndex != -1 /*&& item->objectNumber != ID_HARPOON*/) { // Apply extra rotations __int32 lastJoint = 0; for (__int32 j = 0; j < moveableObj->LinearizedBones.size(); j++) { RendererBone* currentBone = moveableObj->LinearizedBones[j]; currentBone->ExtraRotation = Vector3(0.0f, 0.0f, 0.0f); if (creature) { if (currentBone->ExtraRotationFlags & ROT_Y) { currentBone->ExtraRotation.y = TR_ANGLE_TO_RAD(creature->jointRotation[lastJoint]); lastJoint++; } if (currentBone->ExtraRotationFlags & ROT_X) { currentBone->ExtraRotation.x = TR_ANGLE_TO_RAD(creature->jointRotation[lastJoint]); lastJoint++; } if (currentBone->ExtraRotationFlags & ROT_Z) { currentBone->ExtraRotation.z = TR_ANGLE_TO_RAD(creature->jointRotation[lastJoint]); lastJoint++; } } } __int16 *framePtr[2]; __int32 rate; __int32 frac = GetFrame_D2(item, framePtr, &rate); updateAnimation(itemToDraw, moveableObj, framePtr, frac, rate, 0xFFFFFFFF); for (__int32 m = 0; m < itemToDraw->NumMeshes; m++) itemToDraw->AnimationTransforms[m] = itemToDraw->AnimationTransforms[m].Transpose(); } // Update world matrix translation = Matrix::CreateTranslation(item->pos.xPos, item->pos.yPos, item->pos.zPos); rotation = Matrix::CreateFromYawPitchRoll(TR_ANGLE_TO_RAD(item->pos.yRot), TR_ANGLE_TO_RAD(item->pos.xRot), TR_ANGLE_TO_RAD(item->pos.zRot)); itemToDraw->World = rotation * translation; } } void Renderer11::updateLaraAnimations() { Matrix translation; Matrix rotation; Matrix lastMatrix; Matrix hairMatrix; Matrix identity; Matrix world; RendererObject* laraObj = m_moveableObjects[ID_LARA]; // Clear extra rotations for (__int32 i = 0; i < laraObj->LinearizedBones.size(); i++) laraObj->LinearizedBones[i]->ExtraRotation = Vector3(0.0f, 0.0f, 0.0f); // Lara world matrix translation = Matrix::CreateTranslation(LaraItem->pos.xPos, LaraItem->pos.yPos, LaraItem->pos.zPos); rotation = Matrix::CreateFromYawPitchRoll( TR_ANGLE_TO_RAD(LaraItem->pos.yRot), TR_ANGLE_TO_RAD(LaraItem->pos.xRot), TR_ANGLE_TO_RAD(LaraItem->pos.zRot)); m_LaraWorldMatrix = rotation * translation; // Update first Lara's animations laraObj->LinearizedBones[TORSO]->ExtraRotation = Vector3(TR_ANGLE_TO_RAD(Lara.torsoXrot), TR_ANGLE_TO_RAD(Lara.torsoYrot), TR_ANGLE_TO_RAD(Lara.torsoZrot)); laraObj->LinearizedBones[HEAD]->ExtraRotation = Vector3(TR_ANGLE_TO_RAD(Lara.headXrot), TR_ANGLE_TO_RAD(Lara.headYrot), TR_ANGLE_TO_RAD(Lara.headZrot)); // First calculate matrices for legs, hips, head and torso __int32 mask = (1 << HIPS) | (1 << THIGH_L) | (1 << CALF_L) | (1 << FOOT_L) | (1 << THIGH_R) | (1 << CALF_R) | (1 << FOOT_R) | (1 << TORSO) | (1 << HEAD); __int16 *framePtr[2]; __int32 rate; __int32 frac = GetFrame_D2(LaraItem, framePtr, &rate); updateAnimation(NULL, laraObj, framePtr, frac, rate, mask); // Then the arms, based on current weapon status if ((Lara.gunStatus == LG_NO_ARMS || Lara.gunStatus == LG_HANDS_BUSY) && Lara.gunType != WEAPON_FLARE) { // Both arms mask = (1 << UARM_L) | (1 << LARM_L) | (1 << HAND_L) | (1 << UARM_R) | (1 << LARM_R) | (1 << HAND_R); frac = GetFrame_D2(LaraItem, framePtr, &rate); updateAnimation(NULL, laraObj, framePtr, frac, rate, mask); } else { // While handling weapon some extra rotation could be applied to arms laraObj->LinearizedBones[UARM_L]->ExtraRotation += Vector3(TR_ANGLE_TO_RAD(Lara.leftArm.xRot), TR_ANGLE_TO_RAD(Lara.leftArm.yRot), TR_ANGLE_TO_RAD(Lara.leftArm.zRot)); laraObj->LinearizedBones[UARM_R]->ExtraRotation += Vector3(TR_ANGLE_TO_RAD(Lara.rightArm.xRot), TR_ANGLE_TO_RAD(Lara.rightArm.yRot), TR_ANGLE_TO_RAD(Lara.rightArm.zRot)); if (Lara.gunType != WEAPON_FLARE) { // HACK: backguns handles differently if (Lara.gunType == WEAPON_SHOTGUN || Lara.gunType == WEAPON_GRENADE_LAUNCHER || Lara.gunType == WEAPON_CROSSBOW || Lara.gunType == WEAPON_ROCKET_LAUNCHER || Lara.gunType == WEAPON_HARPOON_GUN) { // Left arm mask = (1 << UARM_L) | (1 << LARM_L) | (1 << HAND_L); __int16* shotgunFramePtr = Lara.leftArm.frameBase + (Lara.leftArm.frameNumber) * (Anims[Lara.leftArm.animNumber].interpolation >> 8); updateAnimation(NULL, laraObj, &shotgunFramePtr, 0, 1, mask); // Right arm mask = (1 << UARM_R) | (1 << LARM_R) | (1 << HAND_R); shotgunFramePtr = Lara.rightArm.frameBase + (Lara.rightArm.frameNumber) * (Anims[Lara.rightArm.animNumber].interpolation >> 8); updateAnimation(NULL, laraObj, &shotgunFramePtr, 0, 1, mask); } else { // Left arm mask = (1 << UARM_L) | (1 << LARM_L) | (1 << HAND_L); frac = getFrame(Lara.leftArm.animNumber, Lara.leftArm.frameNumber, framePtr, &rate); updateAnimation(NULL, laraObj, framePtr, frac, rate, mask); // Right arm mask = (1 << UARM_R) | (1 << LARM_R) | (1 << HAND_R); frac = getFrame(Lara.rightArm.animNumber, Lara.rightArm.frameNumber, framePtr, &rate); updateAnimation(NULL, laraObj, framePtr, frac, rate, mask); } } else { // Left arm mask = (1 << UARM_L) | (1 << LARM_L) | (1 << HAND_L); frac = getFrame(Lara.leftArm.animNumber, Lara.leftArm.frameNumber, framePtr, &rate); updateAnimation(NULL, laraObj, framePtr, frac, rate, mask); // Right arm mask = (1 << UARM_R) | (1 << LARM_R) | (1 << HAND_R); frac = GetFrame_D2(LaraItem, framePtr, &rate); updateAnimation(NULL, laraObj, framePtr, frac, rate, mask); } } // At this point, Lara's matrices are ready. Now let's do ponytails... if (m_moveableObjects[ID_HAIR] != NULL) { RendererObject* hairsObj = m_moveableObjects[ID_HAIR]; lastMatrix = Matrix::Identity; identity = Matrix::Identity; Vector3 parentVertices[6][4]; Matrix headMatrix; RendererObject* objSkin = m_moveableObjects[ID_LARA_SKIN]; RendererObject* objLara = m_moveableObjects[ID_LARA]; RendererMesh* parentMesh = objSkin->ObjectMeshes[HEAD]; RendererBone* parentBone = objSkin->LinearizedBones[HEAD]; world = objLara->AnimationTransforms[HEAD] * m_LaraWorldMatrix; __int32 lastVertex = 0; __int32 lastIndex = 0; GameScriptLevel* level = g_GameFlow->GetLevel(CurrentLevel); for (__int32 p = 0; p < ((level->LaraType == LARA_DRAW_TYPE::LARA_YOUNG) ? 2 : 1); p++) { // We can't use hardware skinning here, however hairs have just a few vertices so // it's not so bad doing skinning in software if (level->LaraType == LARA_DRAW_TYPE::LARA_YOUNG) { if (p == 1) { parentVertices[0][0] = Vector3::Transform(parentMesh->Positions[68], world); parentVertices[0][1] = Vector3::Transform(parentMesh->Positions[69], world); parentVertices[0][2] = Vector3::Transform(parentMesh->Positions[70], world); parentVertices[0][3] = Vector3::Transform(parentMesh->Positions[71], world); } else { parentVertices[0][0] = Vector3::Transform(parentMesh->Positions[78], world); parentVertices[0][1] = Vector3::Transform(parentMesh->Positions[78], world); parentVertices[0][2] = Vector3::Transform(parentMesh->Positions[77], world); parentVertices[0][3] = Vector3::Transform(parentMesh->Positions[76], world); } } else { parentVertices[0][0] = Vector3::Transform(parentMesh->Positions[37], world); parentVertices[0][1] = Vector3::Transform(parentMesh->Positions[39], world); parentVertices[0][2] = Vector3::Transform(parentMesh->Positions[40], world); parentVertices[0][3] = Vector3::Transform(parentMesh->Positions[38], world); } for (__int32 i = 0; i < 6; i++) { RendererMesh* mesh = hairsObj->ObjectMeshes[i]; RendererBucket* bucket = &mesh->Buckets[RENDERER_BUCKET_SOLID]; translation = Matrix::CreateTranslation(Hairs[7 * p + i].pos.xPos, Hairs[7 * p + i].pos.yPos, Hairs[7 * p + i].pos.zPos); rotation = Matrix::CreateFromYawPitchRoll( TR_ANGLE_TO_RAD(Hairs[7 * p + i].pos.yRot), TR_ANGLE_TO_RAD(Hairs[7 * p + i].pos.xRot), TR_ANGLE_TO_RAD(Hairs[7 * p + i].pos.zRot)); m_hairsMatrices[6 * p + i] = rotation * translation; __int32 baseVertex = lastVertex; for (__int32 j = 0; j < bucket->Vertices.size(); j++) { __int32 oldVertexIndex = (__int32)bucket->Vertices[j].Bone; if (oldVertexIndex < 4) { m_hairVertices[lastVertex].Position.x = parentVertices[i][oldVertexIndex].x; m_hairVertices[lastVertex].Position.y = parentVertices[i][oldVertexIndex].y; m_hairVertices[lastVertex].Position.z = parentVertices[i][oldVertexIndex].z; m_hairVertices[lastVertex].UV.x = bucket->Vertices[j].UV.x; m_hairVertices[lastVertex].UV.y = bucket->Vertices[j].UV.y; Vector3 n = Vector3(bucket->Vertices[j].Normal.x, bucket->Vertices[j].Normal.y, bucket->Vertices[j].Normal.z); n.Normalize(); n = Vector3::TransformNormal(n, m_hairsMatrices[6 * p + i]); n.Normalize(); m_hairVertices[lastVertex].Normal.x = n.x; m_hairVertices[lastVertex].Normal.y = n.y; m_hairVertices[lastVertex].Normal.z = n.z; m_hairVertices[lastVertex].Color = Vector4::One * 0.5f; lastVertex++; } else { Vector3 in = Vector3(bucket->Vertices[j].Position.x, bucket->Vertices[j].Position.y, bucket->Vertices[j].Position.z); Vector3 out = Vector3::Transform(in, m_hairsMatrices[6 * p + i]); if (i < 5) { parentVertices[i + 1][oldVertexIndex - 4].x = out.x; parentVertices[i + 1][oldVertexIndex - 4].y = out.y; parentVertices[i + 1][oldVertexIndex - 4].z = out.z; } m_hairVertices[lastVertex].Position.x = out.x; m_hairVertices[lastVertex].Position.y = out.y; m_hairVertices[lastVertex].Position.z = out.z; m_hairVertices[lastVertex].UV.x = bucket->Vertices[j].UV.x; m_hairVertices[lastVertex].UV.y = bucket->Vertices[j].UV.y; Vector3 n = Vector3(bucket->Vertices[j].Normal.x, bucket->Vertices[j].Normal.y, bucket->Vertices[j].Normal.z); n.Normalize(); n = Vector3::TransformNormal(n, m_hairsMatrices[6 * p + i]); n.Normalize(); m_hairVertices[lastVertex].Normal.x = n.x; m_hairVertices[lastVertex].Normal.y = n.y; m_hairVertices[lastVertex].Normal.z = n.z; m_hairVertices[lastVertex].Color = Vector4::One * 0.5f; lastVertex++; } } for (__int32 j = 0; j < bucket->Indices.size(); j++) { m_hairIndices[lastIndex] = baseVertex + bucket->Indices[j]; lastIndex++; } } } } // Transpose matrices for shaders for (__int32 m = 0; m < 15; m++) laraObj->AnimationTransforms[m] = laraObj->AnimationTransforms[m].Transpose(); } __int32 Renderer11::getFrame(__int16 animation, __int16 frame, __int16** framePtr, __int32* rate) { ITEM_INFO item; item.animNumber = animation; item.frameNumber = frame; return GetFrame_D2(&item, framePtr, rate); } void Renderer11::updateEffects() { for (__int32 i = 0; i < m_effectsToDraw.Size(); i++) { RendererEffect* fx = m_effectsToDraw[i]; Matrix translation = Matrix::CreateTranslation(fx->Effect->pos.xPos, fx->Effect->pos.yPos, fx->Effect->pos.zPos); Matrix rotation = Matrix::CreateFromYawPitchRoll( TR_ANGLE_TO_RAD(fx->Effect->pos.yRot), TR_ANGLE_TO_RAD(fx->Effect->pos.xRot), TR_ANGLE_TO_RAD(fx->Effect->pos.zRot)); m_effectsToDraw[i]->World = rotation * translation; } } void Renderer11::updateAnimation(RendererItem* item, RendererObject* obj, __int16** frmptr, __int16 frac, __int16 rate, __int32 mask) { RendererBone* bones[32]; __int32 nextBone = 0; Matrix rotation; Matrix* transforms = (item == NULL ? obj->AnimationTransforms.data() : &item->AnimationTransforms[0]); // Push bones[nextBone++] = obj->Skeleton; while (nextBone != 0) { // Pop the last bone in the stack RendererBone* bone = bones[--nextBone]; bool calculateMatrix = (mask >> bone->Index) & 1; if (calculateMatrix) { Vector3 p = Vector3((int)*(frmptr[0] + 6), (int)*(frmptr[0] + 7), (int)*(frmptr[0] + 8)); fromTrAngle(&rotation, frmptr[0], bone->Index); if (frac) { Vector3 p2 = Vector3((int)*(frmptr[1] + 6), (int)*(frmptr[1] + 7), (int)*(frmptr[1] + 8)); p = Vector3::Lerp(p, p2, frac / ((float)rate)); Matrix rotation2; fromTrAngle(&rotation2, frmptr[1], bone->Index); Quaternion q1, q2, q3; q1 = Quaternion::CreateFromRotationMatrix(rotation); q2 = Quaternion::CreateFromRotationMatrix(rotation2); q3 = Quaternion::Slerp(q1, q2, frac / ((float)rate)); rotation = Matrix::CreateFromQuaternion(q3); } Matrix translation; if (bone == obj->Skeleton) translation = Matrix::CreateTranslation(p.x, p.y, p.z); Matrix extraRotation; extraRotation = Matrix::CreateFromYawPitchRoll(bone->ExtraRotation.y, bone->ExtraRotation.x, bone->ExtraRotation.z); rotation = extraRotation * rotation; if (bone != obj->Skeleton) transforms[bone->Index] = rotation * bone->Transform; else transforms[bone->Index] = rotation * translation; if (bone != obj->Skeleton) transforms[bone->Index] = transforms[bone->Index] * transforms[bone->Parent->Index]; } for (__int32 i = 0; i < bone->Children.size(); i++) { // Push bones[nextBone++] = bone->Children[i]; } } } bool Renderer11::printDebugMessage(__int32 x, __int32 y, __int32 alpha, byte r, byte g, byte b, LPCSTR Message) { return true; } void Renderer11::printDebugMessage(char* message, ...) { char buffer[255]; ZeroMemory(buffer, 255); va_list args; va_start(args, message); _vsprintf_l(buffer, message, NULL, args); va_end(args); PrintString(10, m_currentY, buffer, 0xFFFFFFFF, PRINTSTRING_OUTLINE); m_currentY += 20; } void Renderer11::drawBlood() { for (__int32 i = 0; i < 32; i++) { BLOOD_STRUCT* blood = &Blood[i]; if (blood->On) { addSpriteBillboard(m_sprites[Objects[ID_DEFAULT_SPRITES].meshIndex + 15], blood->x, blood->y, blood->z, blood->Shade * 244, blood->Shade * 0, blood->Shade * 0, TR_ANGLE_TO_RAD(blood->RotAng), 1.0f, blood->Size * 8.0f, blood->Size * 8.0f, BLENDMODE_ALPHABLEND); } } } void Renderer11::drawSparks() { for (__int32 i = 0; i < 1024; i++) { SPARKS* spark = &Sparks[i]; if (spark->on) { if (spark->flags & SP_DEF) { addSpriteBillboard(m_sprites[spark->def], spark->x, spark->y, spark->z, spark->r, spark->g, spark->b, TR_ANGLE_TO_RAD(spark->rotAng), spark->scalar, spark->size * 12.0f, spark->size * 12.0f, BLENDMODE_ALPHABLEND); } else { Vector3 v = Vector3(spark->xVel, spark->yVel, spark->zVel); v.Normalize(); addLine3D(spark->x, spark->y, spark->z, spark->x + v.x * 24.0f, spark->y + v.y * 24.0f, spark->z + v.z * 24.0f, spark->r, spark->g, spark->b); } } } } void Renderer11::drawFires() { for (__int32 k = 0; k < 32; k++) { FIRE_LIST* fire = &Fires[k]; if (fire->on) { for (__int32 i = 0; i < 20; i++) { FIRE_SPARKS* spark = &FireSparks[i]; if (spark->on) { addSpriteBillboard(m_sprites[spark->def], fire->x + spark->x, fire->y + spark->y, fire->z + spark->z, spark->r, spark->g, spark->b, TR_ANGLE_TO_RAD(spark->rotAng), spark->scalar, spark->size * 4.0f, spark->size * 4.0f, BLENDMODE_ALPHABLEND); } } } } } void Renderer11::addSpriteBillboard(RendererSprite* sprite, float x, float y, float z, byte r, byte g, byte b, float rotation, float scale, float width, float height, BLEND_MODES blendMode) { if (m_nextSprite >= MAX_SPRITES) return; scale = 1.0f; width *= scale; height *= scale; RendererSpriteToDraw* spr = &m_spritesBuffer[m_nextSprite++]; spr->Type = RENDERER_SPRITE_TYPE::SPRITE_TYPE_BILLBOARD; spr->Sprite = sprite; spr->X = x; spr->Y = y; spr->Z = z; spr->R = r; spr->G = g; spr->B = b; spr->Rotation = rotation; spr->Scale = scale; spr->Width = width; spr->Height = height; spr->BlendMode = blendMode; m_spritesToDraw.Add(spr); } void Renderer11::drawSmokes() { for (__int32 i = 0; i < 32; i++) { SMOKE_SPARKS* spark = &SmokeSparks[i]; if (spark->On) { addSpriteBillboard(m_sprites[spark->Def], spark->x, spark->y, spark->z, spark->Shade, spark->Shade, spark->Shade, TR_ANGLE_TO_RAD(spark->RotAng), spark->Scalar, spark->Size * 4.0f, spark->Size * 4.0f, BLENDMODE_ALPHABLEND); } } } void Renderer11::addLine3D(__int32 x1, __int32 y1, __int32 z1, __int32 x2, __int32 y2, __int32 z2, byte r, byte g, byte b) { if (m_nextLine3D >= MAX_LINES_3D) return; RendererLine3DToDraw* line = &m_lines3DBuffer[m_nextLine3D++]; line->X1 = x1; line->Y1 = y1; line->Z1 = z1; line->X2 = x2; line->Y2 = y2; line->Z2 = z2; line->R = r; line->G = g; line->B = b; m_lines3DToDraw.Add(line); } void Renderer11::addSprite3D(RendererSprite* sprite, float x1, float y1, float z1, float x2, float y2, float z2, float x3, float y3, float z3, float x4, float y4, float z4, byte r, byte g, byte b, float rotation, float scale, float width, float height, BLEND_MODES blendMode) { if (m_nextSprite >= MAX_SPRITES) return; scale = 1.0f; width *= scale; height *= scale; RendererSpriteToDraw* spr = &m_spritesBuffer[m_nextSprite++]; spr->Type = RENDERER_SPRITE_TYPE::SPRITE_TYPE_3D; spr->Sprite = sprite; spr->X1 = x1; spr->Y1 = y1; spr->Z1 = z1; spr->X2 = x2; spr->Y2 = y2; spr->Z2 = z2; spr->X3 = x3; spr->Y3 = y3; spr->Z3 = z3; spr->X4 = x4; spr->Y4 = y4; spr->Z4 = z4; spr->R = r; spr->G = g; spr->B = b; spr->Rotation = rotation; spr->Scale = scale; spr->Width = width; spr->Height = height; spr->BlendMode = blendMode; m_spritesToDraw.Add(spr); } void Renderer11::drawShockwaves() { for (__int32 i = 0; i < 16; i++) { SHOCKWAVE_STRUCT* shockwave = &ShockWaves[i]; if (shockwave->life) { byte color = shockwave->life * 8; // Inner circle float angle = PI / 32.0f; float c = cos(angle); float s = sin(angle); float x1 = shockwave->x + (shockwave->innerRad * c); float z1 = shockwave->z + (shockwave->innerRad * s); float x4 = shockwave->x + (shockwave->outerRad * c); float z4 = shockwave->z + (shockwave->outerRad * s); angle -= PI / 8.0f; for (__int32 j = 0; j < 16; j++) { c = cos(angle); s = sin(angle); float x2 = shockwave->x + (shockwave->innerRad * c); float z2 = shockwave->z + (shockwave->innerRad * s); float x3 = shockwave->x + (shockwave->outerRad * c); float z3 = shockwave->z + (shockwave->outerRad * s); angle -= PI / 8.0f; addSprite3D(m_sprites[Objects[ID_DEFAULT_SPRITES].meshIndex + 8], x1, shockwave->y, z1, x2, shockwave->y, z2, x3, shockwave->y, z3, x4, shockwave->y, z4, color, color, color, 0, 1, 0, 0, BLENDMODE_ALPHABLEND); x1 = x2; z1 = z2; x4 = x3; z4 = z3; } } } } void Renderer11::drawRipples() { for (__int32 i = 0; i < 32; i++) { RIPPLE_STRUCT* ripple = &Ripples[i]; if (ripple->flags & 1) { float x1 = ripple->x - ripple->size; float z1 = ripple->z - ripple->size; float x2 = ripple->x + ripple->size; float z2 = ripple->z + ripple->size; float y = ripple->y; byte color = (ripple->init ? ripple->init << 1 : ripple->life << 1); addSprite3D(m_sprites[Objects[ID_DEFAULT_SPRITES].meshIndex + 9], x1, y, z2, x2, y, z2, x2, y, z1, x1, y, z1, color, color, color, 0.0f, 1.0f, ripple->size, ripple->size, BLENDMODE_ALPHABLEND); } } } void Renderer11::drawUnderwaterDust() { /*if (m_firstUnderwaterDustParticles) { for (__int32 i = 0; i < NUM_UNDERWATER_DUST_PARTICLES; i++) m_underwaterDustParticles[i].Reset = true; } for (__int32 i = 0; i < NUM_UNDERWATER_DUST_PARTICLES; i++) { RendererUnderwaterDustParticle* dust = &m_underwaterDustParticles[i]; if (dust->Reset) { dust->X = LaraItem->pos.xPos + rand() % UNDERWATER_DUST_PARTICLES_RADIUS - UNDERWATER_DUST_PARTICLES_RADIUS / 2.0f; dust->Y = LaraItem->pos.yPos + rand() % UNDERWATER_DUST_PARTICLES_RADIUS - UNDERWATER_DUST_PARTICLES_RADIUS / 2.0f; dust->Z = LaraItem->pos.zPos + rand() % UNDERWATER_DUST_PARTICLES_RADIUS - UNDERWATER_DUST_PARTICLES_RADIUS / 2.0f; // Check if water room __int16 roomNumber = Camera.pos.roomNumber; FLOOR_INFO* floor = GetFloor(dust->X, dust->Y, dust->Z, &roomNumber); if (!isRoomUnderwater(roomNumber)) continue; if (!isInRoom(dust->X, dust->Y, dust->Z, roomNumber)) { dust->Reset = true; continue; } dust->Life = 0; dust->Reset = false; } dust->Life++; byte color = (dust->Life > 16 ? 32 - dust->Life : dust->Life) * 4; addSpriteBillboard(m_sprites[Objects[ID_DEFAULT_SPRITES].meshIndex + 14], dust->X, dust->Y, dust->Z, color, color, color, 0.0f, 1.0f, UNDERWATER_DUST_PARTICLES_SIZE, UNDERWATER_DUST_PARTICLES_SIZE, BLENDMODE_ALPHABLEND); if (dust->Life >= 32) dust->Reset = true; } m_firstUnderwaterDustParticles = false; */ return; } void Renderer11::drawDrips() { for (__int32 i = 0; i < 32; i++) { DRIP_STRUCT* drip = &Drips[i]; if (drip->On) { addLine3D(drip->x, drip->y, drip->z, drip->x, drip->y + 24.0f, drip->z, drip->R, drip->G, drip->B); } } } void Renderer11::drawBubbles() { for (__int32 i = 0; i < 40; i++) { BUBBLE_STRUCT* bubble = &Bubbles[i]; if (bubble->size) { addSpriteBillboard(m_sprites[Objects[ID_DEFAULT_SPRITES].meshIndex + 13], bubble->pos.x, bubble->pos.y, bubble->pos.z, bubble->shade * 255, bubble->shade * 255, bubble->shade * 255, 0.0f, 1.0f, bubble->size * 0.5f, bubble->size * 0.5f, BLENDMODE_ALPHABLEND); } } } void Renderer11::drawSplahes() { for (__int32 i = 0; i < 4; i++) { SPLASH_STRUCT* splash = &Splashes[i]; if (splash->flags & 1) { byte color = (splash->life >= 32 ? 255 : splash->life << 5); // Inner circle float angle = PI / 16.0f; float c = cos(angle); float s = sin(angle); float dx = splash->innerRad * c; float dz = splash->innerRad * s; float x1 = splash->x + dx; float z1 = splash->z + dz; angle -= PI / 4.0f; for (__int32 j = 0; j < 8; j++) { c = cos(angle); s = sin(angle); dx = splash->innerRad * c; dz = splash->innerRad * s; float x2 = splash->x + dx; float z2 = splash->z + dz; angle -= PI / 4.0f; addSprite3D(m_sprites[Objects[ID_DEFAULT_SPRITES].meshIndex + 8], x1, splash->y + splash->innerY, z1, x2, splash->y + splash->innerY, z2, x2, splash->y, z2, x1, splash->y, z1, color, color, color, 0, 1, 0, 0, BLENDMODE_ALPHABLEND); x1 = x2; z1 = z2; } // Medium circle angle = PI / 16.0f; c = cos(angle); s = sin(angle); dx = splash->middleRad * c; dz = splash->middleRad * s; x1 = splash->x + dx; z1 = splash->z + dz; angle -= PI / 4.0f; for (__int32 j = 0; j < 8; j++) { c = cos(angle); s = sin(angle); dx = splash->middleRad * c; dz = splash->middleRad * s; float x2 = splash->x + dx; float z2 = splash->z + dz; angle -= PI / 4.0f; addSprite3D(m_sprites[Objects[ID_DEFAULT_SPRITES].meshIndex + 8], x1, splash->y + splash->middleY, z1, x2, splash->y + splash->middleY, z2, x2, splash->y, z2, x1, splash->y, z1, color, color, color, 0, 1, 0, 0, BLENDMODE_ALPHABLEND); x1 = x2; z1 = z2; } // Large circle angle = PI / 16.0f; c = cos(angle); s = sin(angle); dx = splash->outerRad * c; dz = splash->outerRad * s; x1 = splash->x + dx; z1 = splash->z + dz; angle -= PI / 4.0f; for (__int32 j = 0; j < 8; j++) { c = cos(angle); s = sin(angle); dx = splash->outerRad * c; dz = splash->outerRad * s; float x2 = splash->x + dx; float z2 = splash->z + dz; angle -= PI / 4.0f; addSprite3D(m_sprites[Objects[ID_DEFAULT_SPRITES].meshIndex + 8], x1, splash->y - splash->outerSize, z1, x2, splash->y - splash->outerSize, z2, x2, splash->y, z2, x1, splash->y, z1, color, color, color, 0, 1, 0, 0, BLENDMODE_ALPHABLEND); x1 = x2; z1 = z2; } } } } bool Renderer11::drawSprites() { m_context->RSSetState(m_states->CullNone()); m_context->OMSetDepthStencilState(m_states->DepthRead(), 0); m_context->VSSetShader(m_vsSprites, NULL, 0); m_context->PSSetShader(m_psSprites, NULL, 0); m_stCameraMatrices.View = View.Transpose(); m_stCameraMatrices.Projection = Projection.Transpose(); updateConstantBuffer(m_cbCameraMatrices, &m_stCameraMatrices, sizeof(CCameraMatrixBuffer)); m_context->VSSetConstantBuffers(0, 1, &m_cbCameraMatrices); m_context->PSSetShaderResources(0, 1, &m_textureAtlas->ShaderResourceView); ID3D11SamplerState* sampler = m_states->AnisotropicClamp(); m_context->PSSetSamplers(0, 1, &sampler); m_context->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); m_context->IASetInputLayout(m_inputLayout); for (__int32 b = 0; b < 3; b++) { BLEND_MODES currentBlendMode = (BLEND_MODES)b; __int32 numSpritesToDraw = m_spritesToDraw.Size(); __int32 lastSprite = 0; m_primitiveBatch->Begin(); for (__int32 i = 0; i < numSpritesToDraw; i++) { RendererSpriteToDraw* spr = m_spritesToDraw[i]; if (spr->BlendMode != currentBlendMode) continue; if (currentBlendMode == BLENDMODE_OPAQUE) { m_context->OMSetBlendState(m_states->Opaque(), NULL, 0xFFFFFFFF); } else { m_context->OMSetBlendState(m_states->Additive(), NULL, 0xFFFFFFFF); } if (spr->Type == RENDERER_SPRITE_TYPE::SPRITE_TYPE_BILLBOARD) { float halfWidth = spr->Width / 2.0f; float halfHeight = spr->Height / 2.0f; Matrix billboardMatrix; createBillboardMatrix(&billboardMatrix, &Vector3(spr->X, spr->Y, spr->Z), &Vector3(Camera.pos.x, Camera.pos.y, Camera.pos.z), spr->Rotation); Vector3 p0 = Vector3(-halfWidth, -halfHeight, 0); Vector3 p1 = Vector3(halfWidth, -halfHeight, 0); Vector3 p2 = Vector3(halfWidth, halfHeight, 0); Vector3 p3 = Vector3(-halfWidth, halfHeight, 0); Vector3 p0t = Vector3::Transform(p0, billboardMatrix); Vector3 p1t = Vector3::Transform(p1, billboardMatrix); Vector3 p2t = Vector3::Transform(p2, billboardMatrix); Vector3 p3t = Vector3::Transform(p3, billboardMatrix); RendererVertex v0; v0.Position.x = p0t.x; v0.Position.y = p0t.y; v0.Position.z = p0t.z; v0.UV.x = spr->Sprite->UV[0].x; v0.UV.y = spr->Sprite->UV[0].y; v0.Color.x = spr->R / 255.0f; v0.Color.y = spr->G / 255.0f; v0.Color.z = spr->B / 255.0f; v0.Color.w = 1.0f; RendererVertex v1; v1.Position.x = p1t.x; v1.Position.y = p1t.y; v1.Position.z = p1t.z; v1.UV.x = spr->Sprite->UV[1].x; v1.UV.y = spr->Sprite->UV[1].y; v1.Color.x = spr->R / 255.0f; v1.Color.y = spr->G / 255.0f; v1.Color.z = spr->B / 255.0f; v1.Color.w = 1.0f; RendererVertex v2; v2.Position.x = p2t.x; v2.Position.y = p2t.y; v2.Position.z = p2t.z; v2.UV.x = spr->Sprite->UV[2].x; v2.UV.y = spr->Sprite->UV[2].y; v2.Color.x = spr->R / 255.0f; v2.Color.y = spr->G / 255.0f; v2.Color.z = spr->B / 255.0f; v2.Color.w = 1.0f; RendererVertex v3; v3.Position.x = p3t.x; v3.Position.y = p3t.y; v3.Position.z = p3t.z; v3.UV.x = spr->Sprite->UV[3].x; v3.UV.y = spr->Sprite->UV[3].y; v3.Color.x = spr->R / 255.0f; v3.Color.y = spr->G / 255.0f; v3.Color.z = spr->B / 255.0f; v3.Color.w = 1.0f; m_primitiveBatch->DrawQuad(v0, v1, v2, v3); } else if (spr->Type == RENDERER_SPRITE_TYPE::SPRITE_TYPE_3D) { Vector3 p0t = Vector3(spr->X1, spr->Y1, spr->Z1); Vector3 p1t = Vector3(spr->X2, spr->Y2, spr->Z2); Vector3 p2t = Vector3(spr->X3, spr->Y3, spr->Z3); Vector3 p3t = Vector3(spr->X4, spr->Y4, spr->Z4); RendererVertex v0; v0.Position.x = p0t.x; v0.Position.y = p0t.y; v0.Position.z = p0t.z; v0.UV.x = spr->Sprite->UV[0].x; v0.UV.y = spr->Sprite->UV[0].y; v0.Color.x = spr->R / 255.0f; v0.Color.y = spr->G / 255.0f; v0.Color.z = spr->B / 255.0f; v0.Color.w = 1.0f; RendererVertex v1; v1.Position.x = p1t.x; v1.Position.y = p1t.y; v1.Position.z = p1t.z; v1.UV.x = spr->Sprite->UV[1].x; v1.UV.y = spr->Sprite->UV[1].y; v1.Color.x = spr->R / 255.0f; v1.Color.y = spr->G / 255.0f; v1.Color.z = spr->B / 255.0f; v1.Color.w = 1.0f; RendererVertex v2; v2.Position.x = p2t.x; v2.Position.y = p2t.y; v2.Position.z = p2t.z; v2.UV.x = spr->Sprite->UV[2].x; v2.UV.y = spr->Sprite->UV[2].y; v2.Color.x = spr->R / 255.0f; v2.Color.y = spr->G / 255.0f; v2.Color.z = spr->B / 255.0f; v2.Color.w = 1.0f; RendererVertex v3; v3.Position.x = p3t.x; v3.Position.y = p3t.y; v3.Position.z = p3t.z; v3.UV.x = spr->Sprite->UV[3].x; v3.UV.y = spr->Sprite->UV[3].y; v3.Color.x = spr->R / 255.0f; v3.Color.y = spr->G / 255.0f; v3.Color.z = spr->B / 255.0f; v3.Color.w = 1.0f; m_primitiveBatch->DrawQuad(v0, v1, v2, v3); } } m_primitiveBatch->End(); } m_context->RSSetState(m_states->CullCounterClockwise()); m_context->OMSetDepthStencilState(m_states->DepthDefault(), 0); return true; } void Renderer11::createBillboardMatrix(Matrix* out, Vector3* particlePos, Vector3* cameraPos, float rotation) { Vector3 look = *particlePos; look = look - *cameraPos; look.Normalize(); Vector3 cameraUp = Vector3(0.0f, -1.0f, 0.0f); Vector3 right; right = cameraUp.Cross(look); right.Normalize(); // Rotate right vector Matrix rightTransform = Matrix::CreateFromAxisAngle(look, rotation); right = Vector3::Transform(right, rightTransform); Vector3 up; up = look.Cross(right); up.Normalize(); *out = Matrix::Identity; out->_11 = right.x; out->_12 = right.y; out->_13 = right.z; out->_21 = up.x; out->_22 = up.y; out->_23 = up.z; out->_31 = look.x; out->_32 = look.y; out->_33 = look.z; out->_41 = particlePos->x; out->_42 = particlePos->y; out->_43 = particlePos->z; } void Renderer11::updateAnimatedTextures() { for (__int32 i = 0; i < NumberRooms; i++) { RendererRoom* room = m_rooms[i]; if (room == NULL) continue; for (__int32 bucketIndex = 0; bucketIndex < NUM_BUCKETS; bucketIndex++) { RendererBucket* bucket = &room->AnimatedBuckets[bucketIndex]; if (bucket->Vertices.size() == 0) continue; for (__int32 p = 0; p < bucket->Polygons.size(); p++) { RendererPolygon* polygon = &bucket->Polygons[p]; RendererAnimatedTextureSet* set = m_animatedTextureSets[polygon->AnimatedSet]; __int32 textureIndex = -1; for (__int32 j = 0; j < set->NumTextures; j++) { if (set->Textures[j]->Id == polygon->TextureId) { textureIndex = j; break; } } if (textureIndex == -1) continue; if (textureIndex == set->NumTextures - 1) textureIndex = 0; else textureIndex++; polygon->TextureId = set->Textures[textureIndex]->Id; for (__int32 v = 0; v < (polygon->Shape == SHAPE_RECTANGLE ? 4 : 3); v++) { bucket->Vertices[polygon->Indices[v]].UV.x = set->Textures[textureIndex]->UV[v].x; bucket->Vertices[polygon->Indices[v]].UV.y = set->Textures[textureIndex]->UV[v].y; } } } } }