TombEngine/TR5Main/Renderer/Render11Helper.cpp

1029 lines
27 KiB
C++
Raw Normal View History

#pragma once
#include "Renderer11.h"
#include "../Specific/configuration.h"
#include "../Game/draw.h"
extern GameConfiguration g_Configuration;
extern GameFlow* g_GameFlow;
bool Renderer11::isRoomUnderwater(short roomNumber)
{
return (m_rooms[roomNumber].Room->flags & ENV_FLAG_WATER);
}
bool Renderer11::isInRoom(int x, int y, int z, short roomNumber)
{
RendererRoom& const room = m_rooms[roomNumber];
ROOM_INFO* r = room.Room;
return (x >= r->x && x <= r->x + r->xSize * 1024.0f &&
y >= r->maxceiling && y <= r->minfloor &&
z >= r->z && z <= r->z + r->ySize * 1024.0f);
}
vector<RendererVideoAdapter>* Renderer11::GetAdapters()
{
return &m_adapters;
}
void Renderer11::createBillboardMatrix(Matrix* out, Vector3* particlePos, Vector3* cameraPos, float rotation)
{
Vector3 look = *particlePos;
look = look - *cameraPos;
look.Normalize();
Vector3 cameraUp = Vector3(0.0f, -1.0f, 0.0f);
Vector3 right;
right = cameraUp.Cross(look);
right.Normalize();
// Rotate right vector
Matrix rightTransform = Matrix::CreateFromAxisAngle(look, rotation);
right = Vector3::Transform(right, rightTransform);
Vector3 up;
up = look.Cross(right);
up.Normalize();
*out = Matrix::Identity;
out->_11 = right.x;
out->_12 = right.y;
out->_13 = right.z;
out->_21 = up.x;
out->_22 = up.y;
out->_23 = up.z;
out->_31 = look.x;
out->_32 = look.y;
out->_33 = look.z;
out->_41 = particlePos->x;
out->_42 = particlePos->y;
out->_43 = particlePos->z;
}
void Renderer11::updateAnimatedTextures()
{
// Update room's animated textures
for (int i = 0; i < NumberRooms; i++)
{
if (m_rooms.size() <= i) continue;
RendererRoom & const room = m_rooms[i];
for (int bucketIndex = 0; bucketIndex < NUM_BUCKETS; bucketIndex++)
{
RendererBucket* bucket = &room.AnimatedBuckets[bucketIndex];
if (bucket->Vertices.size() == 0)
continue;
for (int p = 0; p < bucket->Polygons.size(); p++)
{
RendererPolygon* polygon = &bucket->Polygons[p];
RendererAnimatedTextureSet& const set = m_animatedTextureSets[polygon->AnimatedSet];
int textureIndex = -1;
for (int j = 0; j < set.NumTextures; j++)
{
if (set.Textures[j].Id == polygon->TextureId)
{
textureIndex = j;
break;
}
}
if (textureIndex == -1)
continue;
if (textureIndex == set.NumTextures - 1)
textureIndex = 0;
else
textureIndex++;
polygon->TextureId = set.Textures[textureIndex].Id;
for (int v = 0; v < (polygon->Shape == SHAPE_RECTANGLE ? 4 : 3); v++)
{
bucket->Vertices[polygon->Indices[v]].UV.x = set.Textures[textureIndex].UV[v].x;
bucket->Vertices[polygon->Indices[v]].UV.y = set.Textures[textureIndex].UV[v].y;
}
}
}
}
// Update waterfalls textures
for (int i = ID_WATERFALL1; i <= ID_WATERFALLSS2; i++)
{
OBJECT_INFO* obj = &Objects[i];
if (obj->loaded)
{
RendererObject* waterfall = m_moveableObjects[i];
for (int m = 0; m < waterfall->ObjectMeshes.size(); m++)
{
RendererMesh* mesh = waterfall->ObjectMeshes[m];
RendererBucket* bucket = &mesh->Buckets[RENDERER_BUCKET_TRANSPARENT_DS];
for (int v = 0; v < bucket->Vertices.size(); v++)
{
RendererVertex* vertex = &bucket->Vertices[v];
int y = vertex->UV.y * TEXTURE_ATLAS_SIZE + 64;
y %= 128;
vertex->UV.y = (float)y / TEXTURE_ATLAS_SIZE;
}
}
}
}
}
void Renderer11::updateEffects()
{
for (int i = 0; i < m_effectsToDraw.size(); i++)
{
RendererEffect* fx = m_effectsToDraw[i];
Matrix translation = Matrix::CreateTranslation(fx->Effect->pos.xPos, fx->Effect->pos.yPos, fx->Effect->pos.zPos);
Matrix rotation = Matrix::CreateFromYawPitchRoll(TR_ANGLE_TO_RAD(fx->Effect->pos.yRot), TR_ANGLE_TO_RAD(fx->Effect->pos.xRot), TR_ANGLE_TO_RAD(fx->Effect->pos.zRot));
m_effectsToDraw[i]->World = rotation * translation;
}
}
void Renderer11::updateAnimation(RendererItem* item, RendererObject* obj, short** frmptr, short frac, short rate, int mask, bool useObjectWorldRotation)
{
RendererBone* bones[32];
int nextBone = 0;
Matrix rotation;
Matrix* transforms = (item == NULL ? obj->AnimationTransforms.data() : &item->AnimationTransforms[0]);
// Push
bones[nextBone++] = obj->Skeleton;
while (nextBone != 0)
{
// Pop the last bone in the stack
RendererBone* bone = bones[--nextBone];
bool calculateMatrix = (mask >> bone->Index) & 1;
if (calculateMatrix)
{
Vector3 p = Vector3((int) * (frmptr[0] + 6), (int) * (frmptr[0] + 7), (int) * (frmptr[0] + 8));
fromTrAngle(&rotation, frmptr[0], bone->Index);
if (frac)
{
Vector3 p2 = Vector3((int) * (frmptr[1] + 6), (int) * (frmptr[1] + 7), (int) * (frmptr[1] + 8));
p = Vector3::Lerp(p, p2, frac / ((float)rate));
Matrix rotation2;
fromTrAngle(&rotation2, frmptr[1], bone->Index);
Quaternion q1, q2, q3;
q1 = Quaternion::CreateFromRotationMatrix(rotation);
q2 = Quaternion::CreateFromRotationMatrix(rotation2);
q3 = Quaternion::Slerp(q1, q2, frac / ((float)rate));
rotation = Matrix::CreateFromQuaternion(q3);
}
Matrix translation;
if (bone == obj->Skeleton)
translation = Matrix::CreateTranslation(p.x, p.y, p.z);
Matrix extraRotation;
extraRotation = Matrix::CreateFromYawPitchRoll(bone->ExtraRotation.y, bone->ExtraRotation.x, bone->ExtraRotation.z);
if (useObjectWorldRotation) {
Quaternion invertedQuat;
transforms[bone->Parent->Index].Invert().Decompose(Vector3(), invertedQuat, Vector3());
rotation = extraRotation * rotation * Matrix::CreateFromQuaternion(invertedQuat);
}
else {
rotation = extraRotation * rotation;
}
if (bone != obj->Skeleton)
transforms[bone->Index] = rotation * bone->Transform;
else
transforms[bone->Index] = rotation * translation;
if (bone != obj->Skeleton)
transforms[bone->Index] = transforms[bone->Index] * transforms[bone->Parent->Index];
}
for (int i = 0; i < bone->Children.size(); i++)
{
// Push
bones[nextBone++] = bone->Children[i];
}
}
}
int Renderer11::getFrame(short animation, short frame, short** framePtr, int* rate)
{
ITEM_INFO item;
item.animNumber = animation;
item.frameNumber = frame;
return GetFrame_D2(&item, framePtr, rate);
}
bool Renderer11::updateConstantBuffer(ID3D11Buffer* buffer, void* data, int size)
{
HRESULT res;
D3D11_MAPPED_SUBRESOURCE mappedResource;
// Lock the constant buffer so it can be written to.
res = m_context->Map(buffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(res))
return false;
// Get a pointer to the data in the constant buffer.
char* dataPtr = reinterpret_cast<char*>(mappedResource.pData);
memcpy(dataPtr, data, size);
// Unlock the constant buffer.
m_context->Unmap(buffer, 0);
return true;
}
void Renderer11::updateItemsAnimations()
{
Matrix translation;
Matrix rotation;
int numItems = m_itemsToDraw.size();
for (int i = 0; i < numItems; i++)
{
RendererItem* itemToDraw = m_itemsToDraw[i];
ITEM_INFO* item = itemToDraw->Item;
CREATURE_INFO* creature = (CREATURE_INFO*)item->data;
// Lara has her own routine
if (item->objectNumber == ID_LARA)
continue;
OBJECT_INFO * obj = &Objects[item->objectNumber];
RendererObject * moveableObj = m_moveableObjects[item->objectNumber];
// Update animation matrices
if (obj->animIndex != -1 /*&& item->objectNumber != ID_HARPOON*/)
{
// Apply extra rotations
int lastJoint = 0;
for (int j = 0; j < moveableObj->LinearizedBones.size(); j++)
{
RendererBone* currentBone = moveableObj->LinearizedBones[j];
currentBone->ExtraRotation = Vector3(0.0f, 0.0f, 0.0f);
if (creature)
{
if (currentBone->ExtraRotationFlags & ROT_Y)
{
currentBone->ExtraRotation.y = TR_ANGLE_TO_RAD(creature->jointRotation[lastJoint]);
lastJoint++;
}
if (currentBone->ExtraRotationFlags & ROT_X)
{
currentBone->ExtraRotation.x = TR_ANGLE_TO_RAD(creature->jointRotation[lastJoint]);
lastJoint++;
}
if (currentBone->ExtraRotationFlags & ROT_Z)
{
currentBone->ExtraRotation.z = TR_ANGLE_TO_RAD(creature->jointRotation[lastJoint]);
lastJoint++;
}
}
}
short* framePtr[2];
int rate;
int frac = GetFrame_D2(item, framePtr, &rate);
updateAnimation(itemToDraw, moveableObj, framePtr, frac, rate, 0xFFFFFFFF);
for (int m = 0; m < itemToDraw->NumMeshes; m++)
itemToDraw->AnimationTransforms[m] = itemToDraw->AnimationTransforms[m].Transpose();
}
// Update world matrix
//translation = Matrix::CreateTranslation(item->pos.xPos, item->pos.yPos, item->pos.zPos);
//rotation = Matrix::CreateFromYawPitchRoll(TR_ANGLE_TO_RAD(item->pos.yRot), TR_ANGLE_TO_RAD(item->pos.xRot), TR_ANGLE_TO_RAD(item->pos.zRot));
//itemToDraw->World = rotation * translation;
int test = 0;
}
}
void Renderer11::fromTrAngle(Matrix* matrix, short* frameptr, int index)
{
short* ptr = &frameptr[0];
ptr += 9;
for (int i = 0; i < index; i++)
{
ptr += ((*ptr & 0xc000) == 0 ? 2 : 1);
}
int rot0 = *ptr++;
int frameMode = (rot0 & 0xc000);
int rot1;
int rotX;
int rotY;
int rotZ;
switch (frameMode)
{
case 0:
rot1 = *ptr++;
rotX = ((rot0 & 0x3ff0) >> 4);
rotY = (((rot1 & 0xfc00) >> 10) | ((rot0 & 0xf) << 6) & 0x3ff);
rotZ = ((rot1) & 0x3ff);
*matrix = Matrix::CreateFromYawPitchRoll(rotY * (360.0f / 1024.0f) * RADIAN,
rotX * (360.0f / 1024.0f) * RADIAN,
rotZ * (360.0f / 1024.0f) * RADIAN);
break;
case 0x4000:
*matrix = Matrix::CreateRotationX((rot0 & 0xfff) * (360.0f / 4096.0f) * RADIAN);
break;
case 0x8000:
*matrix = Matrix::CreateRotationY((rot0 & 0xfff) * (360.0f / 4096.0f) * RADIAN);
break;
case 0xc000:
*matrix = Matrix::CreateRotationZ((rot0 & 0xfff) * (360.0f / 4096.0f) * RADIAN);
break;
}
}
void Renderer11::buildHierarchyRecursive(RendererObject* obj, RendererBone* node, RendererBone* parentNode)
{
node->GlobalTransform = node->Transform * parentNode->GlobalTransform;
obj->BindPoseTransforms[node->Index] = node->GlobalTransform;
obj->Skeleton->GlobalTranslation = Vector3(0.0f, 0.0f, 0.0f);
node->GlobalTranslation = node->Translation + parentNode->GlobalTranslation;
for (int j = 0; j < node->Children.size(); j++)
{
buildHierarchyRecursive(obj, node->Children[j], node);
}
}
void Renderer11::buildHierarchy(RendererObject* obj)
{
obj->Skeleton->GlobalTransform = obj->Skeleton->Transform;
obj->BindPoseTransforms[obj->Skeleton->Index] = obj->Skeleton->GlobalTransform;
obj->Skeleton->GlobalTranslation = Vector3(0.0f, 0.0f, 0.0f);
for (int j = 0; j < obj->Skeleton->Children.size(); j++)
{
buildHierarchyRecursive(obj, obj->Skeleton->Children[j], obj->Skeleton);
}
}
RendererMesh* Renderer11::getRendererMeshFromTrMesh(RendererObject* obj, short* meshPtr, short* refMeshPtr,
short boneIndex, int isJoints, int isHairs)
{
RendererMesh* mesh = new RendererMesh();
short* basePtr = meshPtr;
short cx = *meshPtr++;
short cy = *meshPtr++;
short cz = *meshPtr++;
short r1 = *meshPtr++;
short r2 = *meshPtr++;
short numVertices = *meshPtr++;
VECTOR* vertices = (VECTOR*)malloc(sizeof(VECTOR) * numVertices);
for (int v = 0; v < numVertices; v++)
{
short x = *meshPtr++;
short y = *meshPtr++;
short z = *meshPtr++;
vertices[v].vx = x;
vertices[v].vy = y;
vertices[v].vz = z;
mesh->Positions.push_back(Vector3(x, y, z));
}
short numNormals = *meshPtr++;
VECTOR* normals = NULL;
short* colors = NULL;
if (numNormals > 0)
{
normals = (VECTOR*)malloc(sizeof(VECTOR) * numNormals);
for (int v = 0; v < numNormals; v++)
{
short x = *meshPtr++;
short y = *meshPtr++;
short z = *meshPtr++;
normals[v].vx = x;
normals[v].vy = y;
normals[v].vz = z;
}
}
else
{
short numLights = -numNormals;
colors = (short*)malloc(sizeof(short) * numLights);
for (int v = 0; v < numLights; v++)
{
colors[v] = *meshPtr++;
}
}
short numRectangles = *meshPtr++;
for (int r = 0; r < numRectangles; r++)
{
short v1 = *meshPtr++;
short v2 = *meshPtr++;
short v3 = *meshPtr++;
short v4 = *meshPtr++;
short textureId = *meshPtr++;
short effects = *meshPtr++;
short indices[4] = { v1,v2,v3,v4 };
short textureIndex = textureId & 0x7FFF;
bool doubleSided = (textureId & 0x8000) >> 15;
// Get the object texture
OBJECT_TEXTURE* texture = &ObjectTextures[textureIndex];
int tile = texture->tileAndFlag & 0x7FFF;
// Create vertices
RendererBucket* bucket;
int bucketIndex = RENDERER_BUCKET_SOLID;
if (!doubleSided)
{
if (texture->attribute == 2 || (effects & 1))
bucketIndex = RENDERER_BUCKET_TRANSPARENT;
else
bucketIndex = RENDERER_BUCKET_SOLID;
}
else
{
if (texture->attribute == 2 || (effects & 1))
bucketIndex = RENDERER_BUCKET_TRANSPARENT_DS;
else
bucketIndex = RENDERER_BUCKET_SOLID_DS;
}
// ColAddHorizon special handling
if (obj != NULL && obj->Id == ID_HORIZON && g_GameFlow->GetLevel(CurrentLevel)->ColAddHorizon)
{
if (texture->attribute == 2 || (effects & 1))
bucketIndex = RENDERER_BUCKET_TRANSPARENT;
else
bucketIndex = RENDERER_BUCKET_SOLID;
}
bucket = &mesh->Buckets[bucketIndex];
if (obj != NULL) obj->HasDataInBucket[bucketIndex] = true;
int baseVertices = bucket->NumVertices;
for (int v = 0; v < 4; v++)
{
RendererVertex vertex;
vertex.Position.x = vertices[indices[v]].vx;
vertex.Position.y = vertices[indices[v]].vy;
vertex.Position.z = vertices[indices[v]].vz;
if (numNormals > 0)
{
vertex.Normal.x = normals[indices[v]].vx / 16300.0f;
vertex.Normal.y = normals[indices[v]].vy / 16300.0f;
vertex.Normal.z = normals[indices[v]].vz / 16300.0f;
}
vertex.UV.x = (texture->vertices[v].x * 256.0f + 0.5f + GET_ATLAS_PAGE_X(tile)) / (float)TEXTURE_ATLAS_SIZE;
vertex.UV.y = (texture->vertices[v].y * 256.0f + 0.5f + GET_ATLAS_PAGE_Y(tile)) / (float)TEXTURE_ATLAS_SIZE;
vertex.Bone = boneIndex;
if (isJoints && boneIndex != 0 && m_laraSkinJointRemap[boneIndex][indices[v]] != -1)
vertex.Bone = m_laraSkinJointRemap[boneIndex][indices[v]];
if (isHairs)
vertex.Bone = indices[v];
if (colors == NULL)
{
vertex.Color = Vector4::One * 0.5f;
}
else
{
short shade = colors[indices[v]];
shade = (255 - shade * 255 / 8191) & 0xFF;
vertex.Color = Vector4(shade / 255.0f, shade / 255.0f, shade / 255.0f, 1.0f);
}
bucket->NumVertices++;
bucket->Vertices.push_back(vertex);
}
bucket->Indices.push_back(baseVertices);
bucket->Indices.push_back(baseVertices + 1);
bucket->Indices.push_back(baseVertices + 3);
bucket->Indices.push_back(baseVertices + 2);
bucket->Indices.push_back(baseVertices + 3);
bucket->Indices.push_back(baseVertices + 1);
bucket->NumIndices += 6;
RendererPolygon newPolygon;
newPolygon.Shape = SHAPE_RECTANGLE;
newPolygon.TextureId = textureId;
newPolygon.Indices[0] = baseVertices;
newPolygon.Indices[1] = baseVertices + 1;
newPolygon.Indices[2] = baseVertices + 2;
newPolygon.Indices[3] = baseVertices + 3;
bucket->Polygons.push_back(newPolygon);
}
short numTriangles = *meshPtr++;
for (int r = 0; r < numTriangles; r++)
{
short v1 = *meshPtr++;
short v2 = *meshPtr++;
short v3 = *meshPtr++;
short textureId = *meshPtr++;
short effects = *meshPtr++;
short indices[3] = { v1,v2,v3 };
short textureIndex = textureId & 0x7FFF;
bool doubleSided = (textureId & 0x8000) >> 15;
// Get the object texture
OBJECT_TEXTURE* texture = &ObjectTextures[textureIndex];
int tile = texture->tileAndFlag & 0x7FFF;
// Create vertices
RendererBucket* bucket;
int bucketIndex = RENDERER_BUCKET_SOLID;
if (!doubleSided)
{
if (texture->attribute == 2 || (effects & 1))
bucketIndex = RENDERER_BUCKET_TRANSPARENT;
else
bucketIndex = RENDERER_BUCKET_SOLID;
}
else
{
if (texture->attribute == 2 || (effects & 1))
bucketIndex = RENDERER_BUCKET_TRANSPARENT_DS;
else
bucketIndex = RENDERER_BUCKET_SOLID_DS;
}
bucket = &mesh->Buckets[bucketIndex];
if (obj != NULL) obj->HasDataInBucket[bucketIndex] = true;
int baseVertices = bucket->NumVertices;
for (int v = 0; v < 3; v++)
{
RendererVertex vertex;
vertex.Position.x = vertices[indices[v]].vx;
vertex.Position.y = vertices[indices[v]].vy;
vertex.Position.z = vertices[indices[v]].vz;
if (numNormals > 0)
{
vertex.Normal.x = normals[indices[v]].vx / 16300.0f;
vertex.Normal.y = normals[indices[v]].vy / 16300.0f;
vertex.Normal.z = normals[indices[v]].vz / 16300.0f;
}
vertex.UV.x = (texture->vertices[v].x * 256.0f + 0.5f + GET_ATLAS_PAGE_X(tile)) / (float)TEXTURE_ATLAS_SIZE;
vertex.UV.y = (texture->vertices[v].y * 256.0f + 0.5f + GET_ATLAS_PAGE_Y(tile)) / (float)TEXTURE_ATLAS_SIZE;
vertex.Bone = boneIndex;
if (isJoints && boneIndex != 0 && m_laraSkinJointRemap[boneIndex][indices[v]] != -1)
vertex.Bone = m_laraSkinJointRemap[boneIndex][indices[v]];
if (isHairs)
vertex.Bone = indices[v];
if (colors == NULL)
{
vertex.Color = Vector4::One * 0.5f;
}
else
{
short shade = colors[indices[v]];
shade = (255 - shade * 255 / 8191) & 0xFF;
vertex.Color = Vector4(shade / 255.0f, shade / 255.0f, shade / 255.0f, 1.0f);
}
bucket->NumVertices++;
bucket->Vertices.push_back(vertex);
}
bucket->Indices.push_back(baseVertices);
bucket->Indices.push_back(baseVertices + 1);
bucket->Indices.push_back(baseVertices + 2);
bucket->NumIndices += 3;
RendererPolygon newPolygon;
newPolygon.Shape = SHAPE_TRIANGLE;
newPolygon.TextureId = textureId;
newPolygon.Indices[0] = baseVertices;
newPolygon.Indices[1] = baseVertices + 1;
newPolygon.Indices[2] = baseVertices + 2;
bucket->Polygons.push_back(newPolygon);
}
free(vertices);
if (normals != NULL) free(normals);
if (colors != NULL) free(colors);
unsigned int castedMeshPtr = reinterpret_cast<unsigned int>(refMeshPtr);
if (m_meshPointersToMesh.find(castedMeshPtr) == m_meshPointersToMesh.end())
m_meshPointersToMesh.insert(pair<unsigned int, RendererMesh*>(castedMeshPtr, mesh));
m_meshes.push_back(mesh);
return mesh;
}
int Renderer11::getAnimatedTextureInfo(short textureId)
{
for (int i = 0; i < m_numAnimatedTextureSets; i++)
{
RendererAnimatedTextureSet& const set = m_animatedTextureSets[i];
for (int j = 0; j < set.NumTextures; j++)
{
if (set.Textures[j].Id == textureId)
return i;
}
}
return -1;
}
bool Renderer11::IsFullsScreen()
{
return (!Windowed);
}
bool Renderer11::IsFading()
{
return (m_fadeStatus != FADEMODE_NONE);
}
void Renderer11::UpdateCameraMatrices(float posX, float posY, float posZ, float targetX, float targetY, float targetZ, float roll, float fov)
{
g_Configuration.MaxDrawDistance = 200;
Vector3 up = -Vector3::UnitY;
Matrix upRotation = Matrix::CreateFromYawPitchRoll(0.0f, 0.0f, roll);
up = Vector3::Transform(up, upRotation);
int zNear = 20;
int zFar = g_Configuration.MaxDrawDistance * 1024;
FieldOfView = fov;
View = Matrix::CreateLookAt(Vector3(posX, posY, posZ), Vector3(targetX, targetY, targetZ), up);
Projection = Matrix::CreatePerspectiveFieldOfView(fov, ScreenWidth / (float)ScreenHeight, zNear, zFar);
m_stCameraMatrices.View = View;
m_stCameraMatrices.Projection = Projection;
// Setup legacy variables
PhdZNear = zNear << W2V_SHIFT;
PhdZFar = zFar << W2V_SHIFT;
}
bool Renderer11::EnumerateVideoModes()
{
HRESULT res;
IDXGIFactory* dxgiFactory = NULL;
res = CreateDXGIFactory(__uuidof(IDXGIFactory), (void**)& dxgiFactory);
if (FAILED(res))
return false;
IDXGIAdapter* dxgiAdapter = NULL;
for (int i = 0; dxgiFactory->EnumAdapters(i, &dxgiAdapter) != DXGI_ERROR_NOT_FOUND; i++)
{
DXGI_ADAPTER_DESC adapterDesc;
UINT stringLength;
char videoCardDescription[128];
dxgiAdapter->GetDesc(&adapterDesc);
int error = wcstombs_s(&stringLength, videoCardDescription, 128, adapterDesc.Description, 128);
RendererVideoAdapter adapter;
adapter.Index = i;
adapter.Name = videoCardDescription;
printf("Adapter %d\n", i);
printf("\t Device Name: %s\n", videoCardDescription);
IDXGIOutput* output = NULL;
res = dxgiAdapter->EnumOutputs(0, &output);
if (FAILED(res))
return false;
UINT numModes = 0;
DXGI_MODE_DESC* displayModes = NULL;
DXGI_FORMAT format = DXGI_FORMAT_R8G8B8A8_UNORM;
// Get the number of elements
res = output->GetDisplayModeList(format, 0, &numModes, NULL);
if (FAILED(res))
return false;
// Get the list
displayModes = new DXGI_MODE_DESC[numModes];
res = output->GetDisplayModeList(format, 0, &numModes, displayModes);
if (FAILED(res))
{
delete displayModes;
return false;
}
for (int j = 0; j < numModes; j++)
{
DXGI_MODE_DESC* mode = &displayModes[j];
RendererDisplayMode newMode;
// discard lower resolutions
if (mode->Width < 1024 || mode->Height < 768)
continue;
newMode.Width = mode->Width;
newMode.Height = mode->Height;
newMode.RefreshRate = mode->RefreshRate.Numerator / mode->RefreshRate.Denominator;
bool found = false;
for (int k = 0; k < adapter.DisplayModes.size(); k++)
{
RendererDisplayMode* currentMode = &adapter.DisplayModes[k];
if (currentMode->Width == newMode.Width && currentMode->Height == newMode.Height &&
currentMode->RefreshRate == newMode.RefreshRate)
{
found = true;
break;
}
}
if (found)
continue;
adapter.DisplayModes.push_back(newMode);
printf("\t\t %d x %d %d Hz\n", newMode.Width, newMode.Height, newMode.RefreshRate);
}
m_adapters.push_back(adapter);
delete displayModes;
}
dxgiFactory->Release();
return true;
}
int SortLightsFunction(RendererLight* a, RendererLight* b)
{
if (a->Dynamic > b->Dynamic)
return -1;
return 0;
}
bool SortRoomsFunction(RendererRoom* a, RendererRoom* b)
{
return (a->Distance < b->Distance);
}
int SortRoomsFunctionNonStd(RendererRoom* a, RendererRoom* b)
{
return (a->Distance - b->Distance);
}
void Renderer11::getVisibleRooms(int from, int to, Vector4* viewPort, bool water, int count)
{
// Avoid allocations, 1024 should be fine
RendererRoomNode nodes[1024];
int nextNode = 0;
// Avoid reallocations, 1024 should be fine
RendererRoomNode* stack[1024];
int stackDepth = 0;
RendererRoomNode* node = &nodes[nextNode++];
node->To = to;
node->From = -1;
// Push
stack[stackDepth++] = node;
while (stackDepth > 0)
{
// Pop
node = stack[--stackDepth];
if (m_rooms[node->To].Visited)
continue;
ROOM_INFO* room = &Rooms[node->To];
Vector3 roomCentre = Vector3(room->x + room->xSize * WALL_SIZE / 2.0f,
(room->minfloor + room->maxceiling) / 2.0f,
room->z + room->ySize * WALL_SIZE / 2.0f);
Vector3 laraPosition = Vector3(Camera.pos.x, Camera.pos.y, Camera.pos.z);
m_rooms[node->To].Distance = (roomCentre - laraPosition).Length();
m_rooms[node->To].Visited = true;
m_roomsToDraw.push_back(&m_rooms[node->To]);
Rooms[node->To].boundActive = true;
collectLightsForRoom(node->To);
collectItems(node->To);
collectStatics(node->To);
collectEffects(node->To);
Vector4 clipPort;
if (room->door != NULL)
{
short numDoors = *(room->door);
if (numDoors)
{
short* door = room->door + 1;
for (int i = 0; i < numDoors; i++) {
short adjoiningRoom = *(door);
if (node->From != adjoiningRoom && checkPortal(node->To, door, viewPort, &node->ClipPort))
{
RendererRoomNode* childNode = &nodes[nextNode++];
childNode->From = node->To;
childNode->To = adjoiningRoom;
// Push
stack[stackDepth++] = childNode;
}
door += 16;
}
}
}
}
}
bool Renderer11::checkPortal(short roomIndex, short* portal, Vector4* viewPort, Vector4* clipPort)
{
ROOM_INFO* room = &Rooms[roomIndex];
portal++;
Vector3 n = Vector3(portal[0], portal[1], portal[2]);
Vector3 v = Vector3(
Camera.pos.x - (room->x + portal[3]),
Camera.pos.y - (room->y + portal[4]),
Camera.pos.z - (room->z + portal[5]));
// Test camera and normal positions and decide if process door or not
if (n.Dot(v) <= 0.0f)
return false;
int zClip = 0;
Vector4 p[4];
clipPort->x = FLT_MAX;
clipPort->y = FLT_MAX;
clipPort->z = FLT_MIN;
clipPort->w = FLT_MIN;
portal += 3;
// Project all portal's corners in screen space
for (int i = 0; i < 4; i++, portal += 3)
{
Vector4 tmp = Vector4(portal[0] + room->x, portal[1] + room->y, portal[2] + room->z, 1.0f);
// Project corner on screen
Vector4::Transform(tmp, ViewProjection, p[i]);
if (p[i].w > 0.0f)
{
// The corner is in front of camera
p[i].x *= (1.0f / p[i].w);
p[i].y *= (1.0f / p[i].w);
p[i].z *= (1.0f / p[i].w);
clipPort->x = min(clipPort->x, p[i].x);
clipPort->y = min(clipPort->y, p[i].y);
clipPort->z = max(clipPort->z, p[i].x);
clipPort->w = max(clipPort->w, p[i].y);
}
else
// The corner is behind camera
zClip++;
}
// If all points are behind camera then door is not visible
if (zClip == 4)
return false;
// If door crosses camera plane...
if (zClip > 0)
{
for (int i = 0; i < 4; i++)
{
Vector4 a = p[i];
Vector4 b = p[(i + 1) % 4];
if ((a.w <= 0.0f) ^ (b.w <= 0.0f)) {
if (a.x < 0.0f && b.x < 0.0f)
clipPort->x = -1.0f;
else
if (a.x > 0.0f && b.x > 0.0f)
clipPort->z = 1.0f;
else
{
clipPort->x = -1.0f;
clipPort->z = 1.0f;
}
if (a.y < 0.0f && b.y < 0.0f)
clipPort->y = -1.0f;
else
if (a.y > 0.0f && b.y > 0.0f)
clipPort->w = 1.0f;
else
{
clipPort->y = -1.0f;
clipPort->w = 1.0f;
}
}
}
}
clipPort->x = max(clipPort->x, viewPort->x);
clipPort->y = max(clipPort->y, viewPort->y);
clipPort->z = min(clipPort->z, viewPort->z);
clipPort->w = min(clipPort->w, viewPort->w);
if (clipPort->x > viewPort->z || clipPort->y > viewPort->w || clipPort->z < viewPort->x || clipPort->w < viewPort->y)
return false;
return true;
}
bool Renderer11::sphereBoxIntersection(Vector3 boxMin, Vector3 boxMax, Vector3 sphereCentre, float sphereRadius)
{
//Vector3 closestPointInAabb = Vector3::Min(Vector3::Max(sphereCentre, boxMin), boxMax);
//double distanceSquared = (closestPointInAabb - sphereCentre).LengthSquared();
//return (distanceSquared < (sphereRadius * sphereRadius));
/*float x = max(boxMin.x, min(sphereCentre.x, boxMax.x));
float y = max(boxMin.y, min(sphereCentre.y, boxMax.y));
float z = max(boxMin.z, min(sphereCentre.z, boxMax.z));
float distance = sqrt((x - sphereCentre.x) * (x - sphereCentre.x) +
(y - sphereCentre.y) * (y - sphereCentre.y) +
(z - sphereCentre.z) * (z - sphereCentre.z));
return (distance < sphereRadius);*/
return 0;
}
void Renderer11::GetLaraBonePosition(Vector3* pos, int bone)
{
}
2020-01-14 14:39:24 -03:00
void Renderer11::FlipRooms(short roomNumber1, short roomNumber2)
{
RendererRoom temporary;
temporary = m_rooms[roomNumber1];
m_rooms[roomNumber1] = m_rooms[roomNumber2];
m_rooms[roomNumber2] = temporary;
m_rooms[roomNumber1].Room = &Rooms[roomNumber1];
m_rooms[roomNumber2].Room = &Rooms[roomNumber2];
}