Play-/Source/iop/IopBios.cpp
2023-07-23 17:22:18 -04:00

3982 lines
111 KiB
C++

#include <vector>
#include <cstring>
#include "string_format.h"
#include "PtrStream.h"
#include "xml/FilteringNodeIterator.h"
#include "lexical_cast_ex.h"
#include "BitManip.h"
#include "StringUtils.h"
#include "std_experimental_map.h"
#include "IopBios.h"
#include "../COP_SCU.h"
#include "../Log.h"
#include "../ElfFile.h"
#include "../Ps2Const.h"
#include "../MipsExecutor.h"
#include "Iop_Intc.h"
#include "../states/MemoryStateFile.h"
#include "../states/StructCollectionStateFile.h"
#ifdef _IOP_EMULATE_MODULES
#include "Iop_IomanX.h"
#include "Iop_Naplink.h"
#endif
#include "Iop_SifManNull.h"
#include "Iop_SifModuleProvider.h"
#include "Iop_Sysclib.h"
#include "Iop_Loadcore.h"
#include "Iop_Thbase.h"
#include "Iop_Thsema.h"
#include "Iop_Thfpool.h"
#include "Iop_Thvpool.h"
#include "Iop_Thmsgbx.h"
#include "Iop_Thevent.h"
#include "Iop_Heaplib.h"
#include "Iop_Timrman.h"
#include "Iop_Intrman.h"
#include "Iop_Dmacman.h"
#include "Iop_Secrman.h"
#include "Iop_Vblank.h"
#include "Iop_Dynamic.h"
#include "Ioman_ScopedFile.h"
#define LOGNAME "iop_bios"
#define STATE_MODULES ("iopbios/dyn_modules.xml")
#define STATE_MODULE_IMPORT_TABLE_ADDRESS ("ImportTableAddress")
#define STATE_MODULESTARTREQUESTS ("iopbios/module_start_requests")
#define BIOS_THREAD_LINK_HEAD_BASE (CIopBios::CONTROL_BLOCK_START + 0x0000)
#define BIOS_CURRENT_THREAD_ID_BASE (CIopBios::CONTROL_BLOCK_START + 0x0008)
#define BIOS_CURRENT_TIME_BASE (CIopBios::CONTROL_BLOCK_START + 0x0010)
#define BIOS_MODULESTARTREQUEST_HEAD_BASE (CIopBios::CONTROL_BLOCK_START + 0x0018)
#define BIOS_MODULESTARTREQUEST_FREE_BASE (CIopBios::CONTROL_BLOCK_START + 0x0020)
#define BIOS_HANDLERS_BASE (CIopBios::CONTROL_BLOCK_START + 0x0100)
#define BIOS_HANDLERS_END (BIOS_HANDLERS_BASE + 0x100 - 1)
#define BIOS_MESSAGEBOX_BASE (BIOS_HANDLERS_END + 1)
#define BIOS_MESSAGEBOX_SIZE (sizeof(CIopBios::MESSAGEBOX) * CIopBios::MAX_MESSAGEBOX)
#define BIOS_SYSTEM_INTRHANDLER_TABLE_BASE (0x480)
#define BIOS_SYSTEM_INTRHANDLER_TABLE_SIZE (0x3 * (sizeof(CIopBios::SYSTEM_INTRHANDLER)))
#define BIOS_THREADS_BASE (BIOS_SYSTEM_INTRHANDLER_TABLE_BASE + BIOS_SYSTEM_INTRHANDLER_TABLE_SIZE)
#define BIOS_THREADS_SIZE (sizeof(CIopBios::THREAD) * CIopBios::MAX_THREAD)
#define BIOS_SEMAPHORES_BASE (BIOS_THREADS_BASE + BIOS_THREADS_SIZE)
#define BIOS_SEMAPHORES_SIZE (sizeof(CIopBios::SEMAPHORE) * CIopBios::MAX_SEMAPHORE)
#define BIOS_EVENTFLAGS_BASE (BIOS_SEMAPHORES_BASE + BIOS_SEMAPHORES_SIZE)
#define BIOS_EVENTFLAGS_SIZE (sizeof(CIopBios::EVENTFLAG) * CIopBios::MAX_EVENTFLAG)
#define BIOS_INTRHANDLER_BASE (BIOS_EVENTFLAGS_BASE + BIOS_EVENTFLAGS_SIZE)
#define BIOS_INTRHANDLER_SIZE (sizeof(CIopBios::INTRHANDLER) * CIopBios::MAX_INTRHANDLER)
#define BIOS_VBLANKHANDLER_BASE (BIOS_INTRHANDLER_BASE + BIOS_INTRHANDLER_SIZE)
#define BIOS_VBLANKHANDLER_SIZE (sizeof(CIopBios::VBLANKHANDLER) * CIopBios::MAX_VBLANKHANDLER)
#define BIOS_FPL_BASE (BIOS_VBLANKHANDLER_BASE + BIOS_VBLANKHANDLER_SIZE)
#define BIOS_FPL_SIZE (sizeof(CIopBios::FPL) * CIopBios::MAX_FPL)
#define BIOS_VPL_BASE (BIOS_FPL_BASE + BIOS_FPL_SIZE)
#define BIOS_VPL_SIZE (sizeof(CIopBios::VPL) * CIopBios::MAX_VPL)
#define BIOS_MEMORYBLOCK_BASE (BIOS_VPL_BASE + BIOS_VPL_SIZE)
#define BIOS_MEMORYBLOCK_SIZE (sizeof(Iop::MEMORYBLOCK) * CIopBios::MAX_MEMORYBLOCK)
#define BIOS_LOADEDMODULE_BASE (BIOS_MEMORYBLOCK_BASE + BIOS_MEMORYBLOCK_SIZE)
#define BIOS_LOADEDMODULE_SIZE (sizeof(CIopBios::LOADEDMODULE) * CIopBios::MAX_LOADEDMODULE)
#define BIOS_INTSTACK_BASE (BIOS_LOADEDMODULE_BASE + BIOS_LOADEDMODULE_SIZE)
#define BIOS_INTSTACK_SIZE (0x800)
#define BIOS_CALCULATED_END (BIOS_INTSTACK_BASE + BIOS_INTSTACK_SIZE)
#define SYSCALL_EXITTHREAD 0x666
#define SYSCALL_RETURNFROMEXCEPTION 0x667
#define SYSCALL_RESCHEDULE 0x668
#define SYSCALL_SLEEPTHREAD 0x669
#define SYSCALL_PROCESSMODULESTART 0x66A
#define SYSCALL_FINISHMODULESTART 0x66B
#define SYSCALL_DELAYTHREADTICKS 0x66C
//This is the space needed to preserve at most four arguments in the stack frame (as per MIPS calling convention)
#define STACK_FRAME_RESERVE_SIZE 0x10
#define MODULE_ID_CDVD_EE_DRIVER 0x70000000
CIopBios::CIopBios(CMIPS& cpu, uint8* ram, uint8* spr)
: m_cpu(cpu)
, m_ram(ram)
, m_spr(spr)
, m_threadFinishAddress(0)
, m_returnFromExceptionAddress(0)
, m_idleFunctionAddress(0)
, m_moduleStarterProcAddress(0)
, m_alarmThreadProcAddress(0)
, m_vblankHandlerAddress(0)
, m_threads(reinterpret_cast<THREAD*>(&m_ram[BIOS_THREADS_BASE]), 1, MAX_THREAD)
, m_memoryBlocks(reinterpret_cast<Iop::MEMORYBLOCK*>(&ram[BIOS_MEMORYBLOCK_BASE]), 1, MAX_MEMORYBLOCK)
, m_semaphores(reinterpret_cast<SEMAPHORE*>(&m_ram[BIOS_SEMAPHORES_BASE]), 1, MAX_SEMAPHORE)
, m_eventFlags(reinterpret_cast<EVENTFLAG*>(&m_ram[BIOS_EVENTFLAGS_BASE]), 1, MAX_EVENTFLAG)
, m_intrHandlers(reinterpret_cast<INTRHANDLER*>(&m_ram[BIOS_INTRHANDLER_BASE]), 1, MAX_INTRHANDLER)
, m_vblankHandlers(reinterpret_cast<VBLANKHANDLER*>(&m_ram[BIOS_VBLANKHANDLER_BASE]), 1, MAX_VBLANKHANDLER)
, m_messageBoxes(reinterpret_cast<MESSAGEBOX*>(&m_ram[BIOS_MESSAGEBOX_BASE]), 1, MAX_MESSAGEBOX)
, m_fpls(reinterpret_cast<FPL*>(&m_ram[BIOS_FPL_BASE]), 1, MAX_FPL)
, m_vpls(reinterpret_cast<VPL*>(&m_ram[BIOS_VPL_BASE]), 1, MAX_VPL)
, m_loadedModules(reinterpret_cast<LOADEDMODULE*>(&m_ram[BIOS_LOADEDMODULE_BASE]), 1, MAX_LOADEDMODULE)
, m_currentThreadId(reinterpret_cast<uint32*>(m_ram + BIOS_CURRENT_THREAD_ID_BASE))
{
static_assert(BIOS_CALCULATED_END <= CIopBios::CONTROL_BLOCK_END, "Control block size is too small");
static_assert(BIOS_SYSTEM_INTRHANDLER_TABLE_BASE > CIopBios::CONTROL_BLOCK_START, "Intr handler table is outside reserved block");
}
CIopBios::~CIopBios()
{
DeleteModules();
}
void CIopBios::Reset(uint32 ramSize, const Iop::SifManPtr& sifMan)
{
m_ramSize = ramSize;
SetDefaultImageVersion(DEFAULT_IMAGE_VERSION);
PopulateSystemIntcHandlers();
//Assemble handlers
{
CMIPSAssembler assembler(reinterpret_cast<uint32*>(&m_ram[BIOS_HANDLERS_BASE]));
m_threadFinishAddress = AssembleThreadFinish(assembler);
m_returnFromExceptionAddress = AssembleReturnFromException(assembler);
m_idleFunctionAddress = AssembleIdleFunction(assembler);
m_moduleStarterProcAddress = AssembleModuleStarterProc(assembler);
m_alarmThreadProcAddress = AssembleAlarmThreadProc(assembler);
m_vblankHandlerAddress = AssembleVblankHandler(assembler);
assert(BIOS_HANDLERS_END > ((assembler.GetProgramSize() * 4) + BIOS_HANDLERS_BASE));
}
//0xBE00000 = Stupid constant to make FFX PSF happy
CurrentTime() = 0xBE00000;
ThreadLinkHead() = 0;
m_currentThreadId = -1;
m_cpu.m_State.nCOP0[CCOP_SCU::STATUS] |= CMIPS::STATUS_IE;
m_threads.FreeAll();
m_semaphores.FreeAll();
m_intrHandlers.FreeAll();
#ifdef DEBUGGER_INCLUDED
m_moduleTags.clear();
#endif
DeleteModules();
if(!sifMan)
{
m_sifMan = std::make_shared<Iop::CSifManNull>();
}
else
{
m_sifMan = sifMan;
}
//Register built-in modules
{
m_ioman = std::make_shared<Iop::CIoman>(*this, m_ram);
RegisterModule(m_ioman);
}
{
m_stdio = std::make_shared<Iop::CStdio>(m_ram, *m_ioman);
RegisterModule(m_stdio);
}
{
m_sysmem = std::make_shared<Iop::CSysmem>(m_ram, CONTROL_BLOCK_END, m_ramSize, m_memoryBlocks, *m_stdio, *m_ioman, *m_sifMan);
RegisterModule(m_sysmem);
}
{
m_modload = std::make_shared<Iop::CModload>(*this, m_ram);
RegisterModule(m_modload);
}
{
RegisterModule(std::make_shared<Iop::CSysclib>(m_ram, m_spr, *m_stdio));
}
{
m_loadcore = std::make_shared<Iop::CLoadcore>(*this, m_ram, *m_sifMan);
RegisterModule(m_loadcore);
}
{
m_libsd = std::make_shared<Iop::CLibSd>();
}
{
RegisterModule(std::make_shared<Iop::CThbase>(*this, m_ram));
}
{
RegisterModule(std::make_shared<Iop::CThmsgbx>(*this, m_ram));
}
{
RegisterModule(std::make_shared<Iop::CThsema>(*this, m_ram));
}
{
RegisterModule(std::make_shared<Iop::CThfpool>(*this));
}
{
RegisterModule(std::make_shared<Iop::CThvpool>(*this));
}
{
RegisterModule(std::make_shared<Iop::CThevent>(*this, m_ram));
}
{
RegisterModule(std::make_shared<Iop::CHeaplib>(*m_sysmem));
}
{
RegisterModule(std::make_shared<Iop::CTimrman>(*this));
}
{
RegisterModule(std::make_shared<Iop::CIntrman>(*this, m_ram));
}
{
RegisterModule(std::make_shared<Iop::CDmacman>());
}
{
RegisterModule(std::make_shared<Iop::CSecrman>());
}
{
RegisterModule(std::make_shared<Iop::CVblank>(*this));
}
{
m_cdvdman = std::make_shared<Iop::CCdvdman>(*this, m_ram);
RegisterModule(m_cdvdman);
}
{
RegisterModule(m_sifMan);
}
{
m_sifCmd = std::make_shared<Iop::CSifCmd>(*this, *m_sifMan, *m_sysmem, m_ram);
RegisterModule(m_sifCmd);
}
#ifdef _IOP_EMULATE_MODULES
{
m_fileIo = std::make_shared<Iop::CFileIo>(*this, m_ram, *m_sifMan, *m_ioman);
RegisterModule(m_fileIo);
}
{
m_cdvdfsv = std::make_shared<Iop::CCdvdfsv>(*m_sifMan, *m_cdvdman, m_ram);
RegisterModule(m_cdvdfsv);
}
{
m_mcserv = std::make_shared<Iop::CMcServ>(*this, *m_sifMan, *m_sifCmd, *m_sysmem, m_ram);
RegisterModule(m_mcserv);
}
{
m_powerOff = std::make_shared<Iop::CPowerOff>(*m_sifMan);
RegisterModule(m_powerOff);
}
RegisterModule(std::make_shared<Iop::CIomanX>(*m_ioman));
//RegisterModule(std::make_shared<Iop::CNaplink>(*m_sifMan, *m_ioman));
{
m_padman = std::make_shared<Iop::CPadMan>();
m_mtapman = std::make_shared<Iop::CMtapMan>();
}
m_hleModules.insert(std::make_pair("rom0:SIO2MAN", m_padman));
m_hleModules.insert(std::make_pair("rom0:PADMAN", m_padman));
m_hleModules.insert(std::make_pair("rom0:XSIO2MAN", m_padman));
m_hleModules.insert(std::make_pair("rom0:XPADMAN", m_padman));
m_hleModules.insert(std::make_pair("rom0:XMTAPMAN", m_mtapman));
m_hleModules.insert(std::make_pair("rom0:MCMAN", m_mcserv));
m_hleModules.insert(std::make_pair("rom0:MCMANO", m_mcserv));
m_hleModules.insert(std::make_pair("rom0:MCSERV", m_mcserv));
m_hleModules.insert(std::make_pair("rom0:XMCMAN", m_mcserv));
m_hleModules.insert(std::make_pair("rom0:XMCSERV", m_mcserv));
m_hleModules.insert(std::make_pair("rom0:CDVDMAN", m_cdvdman));
m_hleModules.insert(std::make_pair("rom0:CDVDFSV", m_cdvdfsv));
#endif
{
const int sifDmaBufferSize = 0x1000;
uint32 sifDmaBufferPtr = m_sysmem->AllocateMemory(sifDmaBufferSize, 0, 0);
m_sifMan->SetDmaBuffer(sifDmaBufferPtr, sifDmaBufferSize);
}
{
const int sifCmdBufferSize = 0x100;
uint32 sifCmdBufferPtr = m_sysmem->AllocateMemory(sifCmdBufferSize, 0, 0);
m_sifMan->SetCmdBuffer(sifCmdBufferPtr, sifCmdBufferSize);
}
m_sifMan->GenerateHandlers(m_ram, *m_sysmem);
InitializeModuleStarter();
Reschedule();
}
uint32& CIopBios::ThreadLinkHead() const
{
return *reinterpret_cast<uint32*>(m_ram + BIOS_THREAD_LINK_HEAD_BASE);
}
uint64& CIopBios::CurrentTime() const
{
return *reinterpret_cast<uint64*>(m_ram + BIOS_CURRENT_TIME_BASE);
}
uint32& CIopBios::ModuleStartRequestHead() const
{
return *reinterpret_cast<uint32*>(m_ram + BIOS_MODULESTARTREQUEST_HEAD_BASE);
}
uint32& CIopBios::ModuleStartRequestFree() const
{
return *reinterpret_cast<uint32*>(m_ram + BIOS_MODULESTARTREQUEST_FREE_BASE);
}
void CIopBios::SaveState(Framework::CZipArchiveWriter& archive)
{
auto modulesFile = std::make_unique<CStructCollectionStateFile>(STATE_MODULES);
{
for(const auto& modulePair : m_modules)
{
if(auto dynamicModule = std::dynamic_pointer_cast<Iop::CDynamic>(modulePair.second))
{
CStructFile moduleStruct;
{
uint32 importTableAddress = reinterpret_cast<uint8*>(dynamicModule->GetExportTable()) - m_ram;
moduleStruct.SetRegister32(STATE_MODULE_IMPORT_TABLE_ADDRESS, importTableAddress);
}
modulesFile->InsertStruct(dynamicModule->GetId().c_str(), moduleStruct);
}
}
}
archive.InsertFile(std::move(modulesFile));
auto builtInModules = GetBuiltInModules();
for(const auto& module : builtInModules)
{
module->SaveState(archive);
}
archive.InsertFile(std::make_unique<CMemoryStateFile>(STATE_MODULESTARTREQUESTS, m_moduleStartRequests, sizeof(m_moduleStartRequests)));
}
void CIopBios::LoadState(Framework::CZipArchiveReader& archive)
{
//Remove all dynamic modules
for(auto modulePairIterator = m_modules.begin();
modulePairIterator != m_modules.end();)
{
if(dynamic_cast<Iop::CDynamic*>(modulePairIterator->second.get()) != nullptr)
{
modulePairIterator = m_modules.erase(modulePairIterator);
}
else
{
modulePairIterator++;
}
}
auto builtInModules = GetBuiltInModules();
for(const auto& module : builtInModules)
{
module->LoadState(archive);
}
CStructCollectionStateFile modulesFile(*archive.BeginReadFile(STATE_MODULES));
{
for(auto structIterator(modulesFile.GetStructBegin());
structIterator != modulesFile.GetStructEnd(); structIterator++)
{
const CStructFile& structFile(structIterator->second);
uint32 importTableAddress = structFile.GetRegister32(STATE_MODULE_IMPORT_TABLE_ADDRESS);
auto module = std::make_shared<Iop::CDynamic>(reinterpret_cast<uint32*>(m_ram + importTableAddress));
FRAMEWORK_MAYBE_UNUSED bool result = RegisterModule(module);
assert(result);
}
}
archive.BeginReadFile(STATE_MODULESTARTREQUESTS)->Read(m_moduleStartRequests, sizeof(m_moduleStartRequests));
#ifdef _IOP_EMULATE_MODULES
//Make sure HLE modules are properly registered
for(const auto& loadedModule : m_loadedModules)
{
if(!loadedModule) continue;
if(loadedModule->state == MODULE_STATE::HLE)
{
auto moduleIterator = std::find_if(m_hleModules.begin(), m_hleModules.end(),
[&](const auto& modulePair) {
return strcmp(loadedModule->name, modulePair.second->GetId().c_str()) == 0;
});
assert(moduleIterator != std::end(m_hleModules));
if(moduleIterator != std::end(m_hleModules))
{
RegisterHleModule(moduleIterator->second);
}
}
}
#endif
#ifdef DEBUGGER_INCLUDED
m_cpu.m_analysis->Clear();
for(const auto& moduleTag : m_moduleTags)
{
m_cpu.m_analysis->Analyse(moduleTag.begin, moduleTag.end);
}
#endif
}
bool CIopBios::IsIdle()
{
return (m_cpu.m_State.nPC == m_idleFunctionAddress);
}
void CIopBios::InitializeModuleStarter()
{
memset(m_moduleStartRequests, 0, sizeof(m_moduleStartRequests));
ModuleStartRequestHead() = MODULESTARTREQUEST::INVALID_PTR;
ModuleStartRequestFree() = 0;
//Initialize Module Load Request Free List
for(unsigned int i = 0; i < (MAX_MODULESTARTREQUEST - 1); i++)
{
auto moduleStartRequest = &m_moduleStartRequests[i];
moduleStartRequest->nextPtr = i + 1;
}
m_moduleStartRequests[MAX_MODULESTARTREQUEST - 1].nextPtr = MODULESTARTREQUEST::INVALID_PTR;
}
void CIopBios::RequestModuleStart(MODULESTARTREQUEST_SOURCE requestSource, bool stopRequest, uint32 moduleId, const char* path, const char* args, unsigned int argsLength)
{
uint32 requestPtr = ModuleStartRequestFree();
assert(requestPtr != MODULESTARTREQUEST::INVALID_PTR);
if(requestPtr == MODULESTARTREQUEST::INVALID_PTR)
{
CLog::GetInstance().Warn(LOGNAME, "Too many modules to be loaded.");
return;
}
auto moduleStartRequest = &m_moduleStartRequests[requestPtr];
//Unlink from free list and link in active list (at the end)
{
ModuleStartRequestFree() = moduleStartRequest->nextPtr;
uint32* currentPtr = &ModuleStartRequestHead();
while(*currentPtr != MODULESTARTREQUEST::INVALID_PTR)
{
auto currentModuleLoadRequest = &m_moduleStartRequests[*currentPtr];
currentPtr = &currentModuleLoadRequest->nextPtr;
}
*currentPtr = requestPtr;
moduleStartRequest->nextPtr = MODULESTARTREQUEST::INVALID_PTR;
}
int32 requesterThreadId = -1;
if(requestSource == MODULESTARTREQUEST_SOURCE::LOCAL)
{
requesterThreadId = m_currentThreadId;
SleepThread();
}
moduleStartRequest->moduleId = moduleId;
moduleStartRequest->stopRequest = stopRequest;
moduleStartRequest->requesterThreadId = requesterThreadId;
assert((strlen(path) + 1) <= MODULESTARTREQUEST::MAX_PATH_SIZE);
strncpy(moduleStartRequest->path, path, MODULESTARTREQUEST::MAX_PATH_SIZE);
moduleStartRequest->path[MODULESTARTREQUEST::MAX_PATH_SIZE - 1] = 0;
memcpy(moduleStartRequest->args, args, argsLength);
moduleStartRequest->argsLength = argsLength;
uint32 moduleStarterThreadId = TriggerCallback(m_moduleStarterProcAddress);
//Make sure thread runs at proper priority (Burnout 3 changes priority)
ChangeThreadPriority(moduleStarterThreadId, MODULE_INIT_PRIORITY);
}
void CIopBios::ProcessModuleStart()
{
static const auto pushToStack =
[](uint8* dst, uint32& stackAddress, const uint8* src, uint32 size) {
uint32 fixedSize = ((size + 0x3) & ~0x3);
uint32 copyAddress = stackAddress - size;
stackAddress -= fixedSize;
memcpy(dst + copyAddress, src, size);
return copyAddress;
};
uint32 requestPtr = ModuleStartRequestHead();
assert(requestPtr != MODULESTARTREQUEST::INVALID_PTR);
if(requestPtr == MODULESTARTREQUEST::INVALID_PTR)
{
CLog::GetInstance().Print(LOGNAME, "Asked to load module when none was requested.");
return;
}
auto moduleStartRequest = &m_moduleStartRequests[requestPtr];
//Unlink from active list and link in free list
{
ModuleStartRequestHead() = moduleStartRequest->nextPtr;
moduleStartRequest->nextPtr = ModuleStartRequestFree();
ModuleStartRequestFree() = requestPtr;
}
auto loadedModule = m_loadedModules[moduleStartRequest->moduleId];
assert(loadedModule != nullptr);
//Patch loader thread context with proper info to invoke module entry proc
if(!moduleStartRequest->stopRequest)
{
const char* path = moduleStartRequest->path;
const char* args = moduleStartRequest->args;
uint32 argsLength = moduleStartRequest->argsLength;
typedef std::vector<uint32> ParamListType;
ParamListType paramList;
paramList.push_back(pushToStack(
m_ram,
m_cpu.m_State.nGPR[CMIPS::SP].nV0,
reinterpret_cast<const uint8*>(path),
static_cast<uint32>(strlen(path)) + 1));
if(argsLength != 0)
{
uint32 stackArgsBase = pushToStack(
m_ram,
m_cpu.m_State.nGPR[CMIPS::SP].nV0,
reinterpret_cast<const uint8*>(args),
argsLength);
unsigned int argsPos = 0;
while(argsPos < argsLength)
{
uint32 argAddress = stackArgsBase + argsPos;
const char* arg = reinterpret_cast<const char*>(m_ram) + argAddress;
unsigned int argLength = static_cast<unsigned int>(strlen(arg)) + 1;
argsPos += argLength;
paramList.push_back(argAddress);
}
}
m_cpu.m_State.nGPR[CMIPS::A0].nV0 = static_cast<uint32>(paramList.size());
//Push an additional null parameter. This is needed by Chessmaster who reads
//out of the argv bounds (reads from argv[argc])
paramList.push_back(0);
for(auto param = paramList.rbegin(); paramList.rend() != param; param++)
{
m_cpu.m_State.nGPR[CMIPS::A1].nV0 = pushToStack(
m_ram,
m_cpu.m_State.nGPR[CMIPS::SP].nV0,
reinterpret_cast<const uint8*>(&(*param)),
4);
}
}
else
{
//When invoking entry routine for module stop, A0 needs to be -1
m_cpu.m_State.nGPR[CMIPS::A0].nD0 = static_cast<int32>(-1);
}
//Allocate stack space for spilling params
m_cpu.m_State.nGPR[CMIPS::SP].nV0 -= STACK_FRAME_RESERVE_SIZE;
m_cpu.m_State.nGPR[CMIPS::S0].nV0 = moduleStartRequest->moduleId;
m_cpu.m_State.nGPR[CMIPS::S1].nV0 = moduleStartRequest->stopRequest;
m_cpu.m_State.nGPR[CMIPS::S2].nV0 = moduleStartRequest->requesterThreadId;
m_cpu.m_State.nGPR[CMIPS::GP].nV0 = loadedModule->gp;
m_cpu.m_State.nGPR[CMIPS::RA].nV0 = m_cpu.m_State.nPC;
m_cpu.m_State.nPC = loadedModule->entryPoint;
}
void CIopBios::FinishModuleStart()
{
uint32 moduleId = m_cpu.m_State.nGPR[CMIPS::S0].nV0;
uint32 stopRequest = m_cpu.m_State.nGPR[CMIPS::S1].nV0;
int32 requesterThreadId = static_cast<int32>(m_cpu.m_State.nGPR[CMIPS::S2].nV0);
auto moduleResidentState = static_cast<MODULE_RESIDENT_STATE>(m_cpu.m_State.nGPR[CMIPS::A0].nV0 & 0x3);
auto loadedModule = m_loadedModules[moduleId];
assert(loadedModule != nullptr);
if(!stopRequest)
{
assert(loadedModule->state == MODULE_STATE::STOPPED);
loadedModule->state = MODULE_STATE::STARTED;
loadedModule->residentState = moduleResidentState;
OnModuleStarted(moduleId);
}
else
{
assert(moduleResidentState == MODULE_RESIDENT_STATE::NO_RESIDENT_END);
assert(loadedModule->state == MODULE_STATE::STARTED);
loadedModule->state = MODULE_STATE::STOPPED;
}
//Make sure interrupts are enabled at the end of this
//some games disable interrupts but never enable them back! (The Mark of Kri)
m_cpu.m_State.nCOP0[CCOP_SCU::STATUS] |= CMIPS::STATUS_IE;
if(requesterThreadId == -1)
{
//If requesterthreadId is -1, we assume that it came from LOADCORE SIF module
//We need to notify the EE that the load request is over
m_sifMan->SendCallReply(Iop::CLoadcore::MODULE_ID, nullptr);
}
else
{
WakeupThread(requesterThreadId, false);
}
//Finish our thread
ExitThread();
}
int32 CIopBios::LoadModuleFromPath(const char* path, uint32 loadAddress, bool ownsMemory)
{
#ifdef _IOP_EMULATE_MODULES
//This is needed by some homebrew (ie.: doom.elf) that load modules from BIOS
auto hleModuleIterator = m_hleModules.find(path);
if(hleModuleIterator != std::end(m_hleModules))
{
return LoadHleModule(hleModuleIterator->second);
}
#endif
uint32 handle = m_ioman->Open(Iop::Ioman::CDevice::OPEN_FLAG_RDONLY, path);
if(handle & 0x80000000)
{
CLog::GetInstance().Print(LOGNAME, "Tried to load '%s' which couldn't be found.\r\n", path);
return -1;
}
Iop::Ioman::CScopedFile file(handle, *m_ioman);
auto stream = m_ioman->GetFileStream(file);
CElf32File module(*stream);
return LoadModule(module, path, loadAddress, ownsMemory);
}
int32 CIopBios::LoadModuleFromAddress(uint32 modulePtr, uint32 loadAddress, bool ownsMemory)
{
CELF32 module(m_ram + modulePtr);
return LoadModule(module, "", loadAddress, ownsMemory);
}
int32 CIopBios::LoadModuleFromHost(uint8* modulePtr)
{
CELF32 module(modulePtr);
return LoadModule(module, "", ~0U, true);
}
int32 CIopBios::LoadModule(CELF32& elf, const char* path, uint32 loadAddress, bool ownsMemory)
{
//Find .iopmod section
const auto& header = elf.GetHeader();
const IOPMOD* iopMod = NULL;
for(unsigned int i = 0; i < header.nSectHeaderCount; i++)
{
auto sectionHeader = elf.GetSection(i);
if(sectionHeader->nType != IOPMOD_SECTION_ID) continue;
iopMod = reinterpret_cast<const IOPMOD*>(elf.GetSectionData(i));
}
std::string moduleName = iopMod ? iopMod->moduleName : "";
if(moduleName.empty())
{
moduleName = path;
}
#ifdef _IOP_EMULATE_MODULES
auto hleModuleIterator = m_hleModules.find(moduleName);
if(hleModuleIterator != std::end(m_hleModules))
{
return LoadHleModule(hleModuleIterator->second);
}
#endif
uint32 loadedModuleId = m_loadedModules.Allocate();
assert(loadedModuleId != -1);
if(loadedModuleId == -1) return -1;
auto loadedModule = m_loadedModules[loadedModuleId];
loadedModule->ownsMemory = ownsMemory;
ExecutableRange moduleRange;
uint32 entryPoint = LoadExecutable(elf, moduleRange, loadAddress);
assert(iopMod);
if(iopMod != nullptr)
{
//Clear BSS section
FRAMEWORK_MAYBE_UNUSED uint32 dataSectPos = iopMod->textSectionSize;
uint32 bssSectPos = iopMod->textSectionSize + iopMod->dataSectionSize;
uint32 bssSectSize = iopMod->bssSectionSize;
uint32 moduleSize = moduleRange.second - moduleRange.first;
if(bssSectSize == 0)
{
//Some games (Kya: Dark Lineage) seem to not report a proper value for bss size.
//Try to compute its value so we can properly clear the section.
assert(moduleSize >= bssSectPos);
bssSectSize = moduleSize - bssSectPos;
}
else
{
//Just make sure that everything checks out
FRAMEWORK_MAYBE_UNUSED uint32 totalSize = bssSectPos + bssSectSize;
assert(totalSize == moduleSize);
}
memset(m_ram + moduleRange.first + bssSectPos, 0, bssSectSize);
}
//Fill in module info
strncpy(loadedModule->name, moduleName.c_str(), LOADEDMODULE::MAX_NAME_SIZE);
loadedModule->version = iopMod->moduleVersion;
loadedModule->start = moduleRange.first;
loadedModule->end = moduleRange.second;
loadedModule->entryPoint = entryPoint;
loadedModule->gp = iopMod ? (iopMod->gp + moduleRange.first) : 0;
loadedModule->state = MODULE_STATE::STOPPED;
#ifdef DEBUGGER_INCLUDED
PrepareModuleDebugInfo(elf, moduleRange, moduleName, path);
#endif
OnModuleLoaded(loadedModule->name);
//Patch for Shadow Hearts PSF set --------------------------------
if(strstr(path, "RSSD_patchmore.IRX") != NULL)
{
const uint32 patchAddress = moduleRange.first + 0xCE0;
uint32 instruction = m_cpu.m_pMemoryMap->GetWord(patchAddress);
if(instruction == 0x1200FFFB)
{
m_cpu.m_pMemoryMap->SetWord(patchAddress, 0x1000FFFB);
}
}
return loadedModuleId;
}
int32 CIopBios::UnloadModule(uint32 loadedModuleId)
{
if(loadedModuleId == MODULE_ID_CDVD_EE_DRIVER)
{
return 0;
}
auto loadedModule = m_loadedModules[loadedModuleId];
if(loadedModule == nullptr)
{
CLog::GetInstance().Print(LOGNAME, "UnloadModule failed because specified module (%d) doesn't exist.\r\n",
loadedModuleId);
return -1;
}
if(loadedModule->state != MODULE_STATE::STOPPED)
{
CLog::GetInstance().Print(LOGNAME, "UnloadModule failed because specified module (%d) wasn't stopped.\r\n",
loadedModuleId);
return -1;
}
//TODO: Remove module from IOP module list?
//TODO: Invalidate MIPS analysis range?
m_cpu.m_executor->ClearActiveBlocksInRange(loadedModule->start, loadedModule->end, false);
if(loadedModule->ownsMemory)
{
//TODO: Check return value here.
m_sysmem->FreeMemory(loadedModule->start);
}
m_loadedModules.Free(loadedModuleId);
return loadedModuleId;
}
int32 CIopBios::StartModule(MODULESTARTREQUEST_SOURCE requestSource, uint32 loadedModuleId, const char* path, const char* args, uint32 argsLength)
{
auto loadedModule = m_loadedModules[loadedModuleId];
if(loadedModule == nullptr)
{
return -1;
}
if(loadedModule->state == MODULE_STATE::HLE)
{
//HLE modules don't need to be started
return loadedModuleId;
}
assert(loadedModule->state == MODULE_STATE::STOPPED);
RequestModuleStart(requestSource, false, loadedModuleId, path, args, argsLength);
return loadedModuleId;
}
int32 CIopBios::StopModule(MODULESTARTREQUEST_SOURCE requestSource, uint32 loadedModuleId)
{
auto loadedModule = m_loadedModules[loadedModuleId];
if(loadedModule == nullptr)
{
CLog::GetInstance().Warn(LOGNAME, "StopModule failed because specified module (%d) doesn't exist.\r\n",
loadedModuleId);
return -1;
}
if(loadedModule->state != MODULE_STATE::STARTED)
{
CLog::GetInstance().Warn(LOGNAME, "StopModule failed because specified module (%d) wasn't started.\r\n",
loadedModuleId);
return -1;
}
if(loadedModule->residentState != MODULE_RESIDENT_STATE::REMOVABLE_RESIDENT_END)
{
CLog::GetInstance().Warn(LOGNAME, "StopModule failed because specified module (%d) isn't removable.\r\n",
loadedModuleId);
return -1;
}
RequestModuleStart(requestSource, true, loadedModuleId, "other", nullptr, 0);
return loadedModuleId;
}
bool CIopBios::CanStopModule(uint32 loadedModuleId) const
{
return (loadedModuleId != MODULE_ID_CDVD_EE_DRIVER);
}
bool CIopBios::IsModuleHle(uint32 loadedModuleId) const
{
auto loadedModule = m_loadedModules[loadedModuleId];
if(!loadedModule)
{
return false;
}
return (loadedModule->state == MODULE_STATE::HLE);
}
int32 CIopBios::SearchModuleByName(const char* moduleName) const
{
for(unsigned int i = 0; i < MAX_LOADEDMODULE; i++)
{
auto loadedModule = m_loadedModules[i];
if(loadedModule == nullptr) continue;
if(!strcmp(loadedModule->name, moduleName))
{
return i;
}
}
if(!strcmp(moduleName, "cdvd_ee_driver"))
{
return MODULE_ID_CDVD_EE_DRIVER;
}
return KERNEL_RESULT_ERROR_UNKNOWN_MODULE;
}
int32 CIopBios::ReferModuleStatus(uint32 moduleId, uint32 statusPtr)
{
auto loadedModule = m_loadedModules[moduleId];
if(loadedModule == nullptr)
{
return KERNEL_RESULT_ERROR_UNKNOWN_MODULE;
}
auto moduleStatus = reinterpret_cast<MODULE_INFO*>(m_ram + statusPtr);
strncpy(moduleStatus->name, loadedModule->name, MODULE_INFO::MAX_NAME_SIZE);
moduleStatus->version = loadedModule->version;
moduleStatus->id = moduleId;
return KERNEL_RESULT_OK;
}
void CIopBios::ProcessModuleReset(const std::string& initCommand)
{
CLog::GetInstance().Print(LOGNAME, "ProcessModuleReset(%s);\r\n", initCommand.c_str());
UnloadUserComponents();
uint32 imageVersion = m_defaultImageVersion;
auto initArguments = StringUtils::Split(initCommand);
assert(initArguments.size() >= 1);
if(initArguments.size() >= 1)
{
auto loaderPath = initArguments[0];
assert(loaderPath.find("UDNL") != std::string::npos);
if(initArguments.size() >= 2)
{
auto imagePath = initArguments[1];
bool found = false;
found = TryGetImageVersionFromContents(imagePath, &imageVersion);
if(!found) found = TryGetImageVersionFromPath(imagePath, &imageVersion);
if(!found)
{
CLog::GetInstance().Warn(LOGNAME, "Failed to find IOP module version from '%s'.\r\n", imagePath.c_str());
}
}
}
m_loadcore->SetModuleVersion(imageVersion);
#ifdef _IOP_EMULATE_MODULES
m_fileIo->SetModuleVersion(imageVersion);
m_mcserv->SetModuleVersion(imageVersion);
#endif
}
void CIopBios::SetDefaultImageVersion(uint32 defaultImageVersion)
{
m_defaultImageVersion = defaultImageVersion;
}
bool CIopBios::TryGetImageVersionFromPath(const std::string& imagePath, unsigned int* result)
{
struct IMAGE_FILE_PATTERN
{
const char* start;
const char* pattern;
};
// clang-format off
static const IMAGE_FILE_PATTERN g_imageFilePatterns[] =
{
{"IOPRP", "IOPRP%d.IMG;1"},
{"DNAS", "DNAS%d.IMG;1"}
};
// clang-format on
for(const auto imageFilePattern : g_imageFilePatterns)
{
auto imageFileName = strstr(imagePath.c_str(), imageFilePattern.start);
if(imageFileName != nullptr)
{
unsigned int imageVersion = 0;
auto cvtCount = sscanf(imageFileName, imageFilePattern.pattern, &imageVersion);
if(cvtCount == 1)
{
if(imageVersion < 100)
{
imageVersion = imageVersion * 100;
}
else
{
imageVersion = imageVersion * 10;
}
if(result)
{
(*result) = imageVersion;
}
return true;
}
}
}
return false;
}
bool CIopBios::TryGetImageVersionFromContents(const std::string& imagePath, unsigned int* result)
{
int32 fd = m_ioman->Open(Iop::Ioman::CDevice::OPEN_FLAG_RDONLY, imagePath.c_str());
if(fd < 0) return false;
//Some notes about this:
//- FFXI/POLViewer resets the IOP with a image without version in the filename
// and it also doesn't have a fileio string that lets us find the required version,
// thus, we rely on the ioprp pattern for this game.
static const std::string fileIoPatternString = "PsIIfileio ";
static const std::string sysmemPatternString = "PsIIsysmem ";
static const std::string loadcorePatternString = "PsIIloadcore";
static const std::string ioprpPatternString = "ioprp";
auto tryMatchVersionPattern =
[result](auto moduleVersionString, const std::string& patternString) {
if(!strncmp(moduleVersionString, patternString.c_str(), patternString.size()))
{
//Found something
unsigned int imageVersion = atoi(moduleVersionString + patternString.size());
if(imageVersion < 1000) return false;
if(result)
{
(*result) = imageVersion;
}
return true;
}
else
{
return false;
}
};
Iop::Ioman::CScopedFile file(fd, *m_ioman);
auto stream = m_ioman->GetFileStream(file);
while(1)
{
static const unsigned int moduleVersionStringSize = 0x10;
char moduleVersionString[moduleVersionStringSize + 1];
auto currentPos = stream->Tell();
auto readAmount = stream->Read(moduleVersionString, moduleVersionStringSize);
if(readAmount != moduleVersionStringSize)
{
//We've hit the end
break;
}
moduleVersionString[moduleVersionStringSize] = 0;
if(tryMatchVersionPattern(moduleVersionString, fileIoPatternString))
{
return true;
}
else if(tryMatchVersionPattern(moduleVersionString, sysmemPatternString))
{
return true;
}
else if(tryMatchVersionPattern(moduleVersionString, loadcorePatternString))
{
return true;
}
else if(tryMatchVersionPattern(moduleVersionString, ioprpPatternString))
{
return true;
}
stream->Seek(currentPos + 1, Framework::STREAM_SEEK_SET);
}
return false;
}
CIopBios::THREAD* CIopBios::GetThread(uint32 threadId)
{
return m_threads[threadId];
}
int32 CIopBios::GetCurrentThreadId()
{
int32 threadId = m_currentThreadId;
if(threadId < 0)
{
return KERNEL_RESULT_ERROR_ILLEGAL_CONTEXT;
}
else
{
return threadId;
}
}
int32 CIopBios::GetCurrentThreadIdRaw() const
{
return m_currentThreadId;
}
uint32 CIopBios::CreateThread(uint32 threadProc, uint32 priority, uint32 stackSize, uint32 optionData, uint32 attributes)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: CreateThread(threadProc = 0x%08X, priority = %d, stackSize = 0x%08X, attributes = 0x%08X);\r\n",
m_currentThreadId.Get(), threadProc, priority, stackSize, attributes);
#endif
//Thread proc address needs to be 4-bytes aligned
if((threadProc & 0x3) != 0)
{
return KERNEL_RESULT_ERROR_ILLEGAL_ENTRY;
}
//Priority needs to be between [1, 126]
if((priority < 1) || (priority > 126))
{
return KERNEL_RESULT_ERROR_ILLEGAL_PRIORITY;
}
if(stackSize == 0)
{
stackSize = DEFAULT_STACKSIZE;
}
//Make sure stack size is a multiple of 4
stackSize = (stackSize + 0x03) & ~0x03;
uint32 stackBase = m_sysmem->AllocateMemory(stackSize, 0, 0);
if(stackBase == 0)
{
return KERNEL_RESULT_ERROR_NO_MEMORY;
}
uint32 threadId = m_threads.Allocate();
assert(threadId != -1);
if(threadId == -1)
{
m_sysmem->FreeMemory(stackBase);
return -1;
}
auto thread = m_threads[threadId];
thread->context = {};
thread->context.delayJump = MIPS_INVALID_PC;
thread->stackSize = stackSize;
thread->stackBase = stackBase;
memset(m_ram + thread->stackBase, 0xFF, thread->stackSize);
thread->id = threadId;
thread->priority = 0;
thread->initPriority = priority;
thread->status = THREAD_STATUS_DORMANT;
thread->threadProc = threadProc;
thread->optionData = optionData;
thread->attributes = attributes;
thread->nextActivateTime = 0;
thread->wakeupCount = 0;
thread->context.gpr[CMIPS::GP] = m_cpu.m_State.nGPR[CMIPS::GP].nV0;
thread->context.gpr[CMIPS::SP] = thread->stackBase + thread->stackSize - STACK_FRAME_RESERVE_SIZE;
return thread->id;
}
int32 CIopBios::DeleteThread(uint32 threadId)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: DeleteThread(threadId = %d);\r\n",
m_currentThreadId.Get(), threadId);
#endif
if(threadId == 0)
{
return KERNEL_RESULT_ERROR_ILLEGAL_THID;
}
auto thread = m_threads[threadId];
if(!thread)
{
return KERNEL_RESULT_ERROR_UNKNOWN_THID;
}
if(thread->status != THREAD_STATUS_DORMANT)
{
return KERNEL_RESULT_ERROR_NOT_DORMANT;
}
UnlinkThread(threadId);
m_sysmem->FreeMemory(thread->stackBase);
m_threads.Free(threadId);
return KERNEL_RESULT_OK;
}
int32 CIopBios::StartThread(uint32 threadId, uint32 param)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%i: StartThread(threadId = %i, param = 0x%08X);\r\n",
m_currentThreadId.Get(), threadId, param);
#endif
auto thread = GetThread(threadId);
assert(thread != nullptr);
if(thread == nullptr)
{
return -1;
}
if(thread->status != THREAD_STATUS_DORMANT)
{
CLog::GetInstance().Print(LOGNAME, "%d: Failed to start thread %d, thread not dormant.\r\n",
m_currentThreadId.Get(), threadId);
assert(false);
return -1;
}
thread->status = THREAD_STATUS_RUNNING;
thread->priority = thread->initPriority;
LinkThread(threadId);
thread->context.epc = thread->threadProc;
thread->context.gpr[CMIPS::A0] = param;
thread->context.gpr[CMIPS::RA] = m_threadFinishAddress;
thread->context.gpr[CMIPS::SP] = thread->stackBase + thread->stackSize - STACK_FRAME_RESERVE_SIZE;
//IOP BIOS disassembly shows that this is done at thread start.
//Not sure why it's needed, but some games seem to rely on it (Armored Core 2: Another Age)
//because thread stack is initialized to 0xFF but it needs a part of it to be set to 0
{
uint32 alignedStackSize = thread->stackSize & ~0x3;
uint32 stackTopClearSize = std::min<uint32>(alignedStackSize, 0xB8);
uint32 clearArea = thread->stackBase + alignedStackSize - stackTopClearSize;
memset(m_ram + clearArea, 0, stackTopClearSize);
}
m_rescheduleNeeded = true;
return 0;
}
int32 CIopBios::StartThreadArgs(uint32 threadId, uint32 args, uint32 argpPtr)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: StartThreadArgs(threadId = %d, args = %d, argp = 0x%08X);\r\n",
m_currentThreadId.Get(), threadId, args, argpPtr);
#endif
auto thread = GetThread(threadId);
assert(thread != nullptr);
if(thread == nullptr)
{
return -1;
}
if(thread->status != THREAD_STATUS_DORMANT)
{
CLog::GetInstance().Print(LOGNAME, "%d: Failed to start thread %d, thread not dormant.\r\n",
m_currentThreadId.Get(), threadId);
assert(false);
return -1;
}
static const auto pushToStack =
[](uint8* dst, uint32& stackAddress, const uint8* src, uint32 size) {
uint32 fixedSize = ((size + 0x3) & ~0x3);
uint32 copyAddress = stackAddress - fixedSize;
stackAddress -= fixedSize;
memcpy(dst + copyAddress, src, size);
return copyAddress;
};
thread->status = THREAD_STATUS_RUNNING;
LinkThread(threadId);
thread->priority = thread->initPriority;
thread->context.epc = thread->threadProc;
thread->context.gpr[CMIPS::RA] = m_threadFinishAddress;
thread->context.gpr[CMIPS::SP] = thread->stackBase + thread->stackSize;
thread->context.gpr[CMIPS::A0] = args;
thread->context.gpr[CMIPS::A1] = pushToStack(m_ram, thread->context.gpr[CMIPS::SP], m_ram + argpPtr, args);
thread->context.gpr[CMIPS::SP] -= STACK_FRAME_RESERVE_SIZE;
m_rescheduleNeeded = true;
return 0;
}
void CIopBios::ExitThread()
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%i: ExitThread();\r\n", m_currentThreadId.Get());
#endif
THREAD* thread = GetThread(m_currentThreadId);
thread->status = THREAD_STATUS_DORMANT;
assert(thread->waitSemaphore == 0);
UnlinkThread(thread->id);
m_rescheduleNeeded = true;
}
uint32 CIopBios::TerminateThread(uint32 threadId)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: TerminateThread(threadId = %d);\r\n",
m_currentThreadId.Get(), threadId);
#endif
assert(threadId != m_currentThreadId);
if(threadId == m_currentThreadId)
{
return KERNEL_RESULT_ERROR_ILLEGAL_THID;
}
auto thread = GetThread(threadId);
assert(thread != nullptr);
if(thread == nullptr)
{
return -1;
}
if(thread->waitSemaphore != 0)
{
auto semaphore = m_semaphores[thread->waitSemaphore];
if(semaphore != nullptr)
{
assert(semaphore->waitCount > 0);
semaphore->waitCount--;
}
thread->waitSemaphore = 0;
}
thread->status = THREAD_STATUS_DORMANT;
UnlinkThread(thread->id);
return KERNEL_RESULT_OK;
}
int32 CIopBios::DelayThread(uint32 delay)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%i: DelayThread(delay = %i);\r\n",
m_currentThreadId.Get(), delay);
#endif
THREAD* thread = GetThread(m_currentThreadId);
thread->nextActivateTime = GetCurrentTime() + MicroSecToClock(delay);
//TODO: Add a proper wait state to allow thread to be relinked
//at the end of the queue at the right moment
UnlinkThread(thread->id);
LinkThread(thread->id);
m_rescheduleNeeded = true;
return KERNEL_RESULT_OK;
}
void CIopBios::DelayThreadTicks(uint32 delay)
{
auto thread = GetThread(m_currentThreadId);
thread->nextActivateTime = GetCurrentTime() + delay;
//TODO: Add a proper wait state to allow thread to be relinked
//at the end of the queue at the right moment
UnlinkThread(thread->id);
LinkThread(thread->id);
m_rescheduleNeeded = true;
}
uint32 CIopBios::SetAlarm(uint32 timePtr, uint32 alarmFunction, uint32 param)
{
uint32 alarmThreadId = -1;
//Find a thread we could recycle for a new alarm
for(auto thread : m_threads)
{
if(!thread) continue;
if(thread->threadProc != m_alarmThreadProcAddress) continue;
if(thread->status == THREAD_STATUS_DORMANT)
{
alarmThreadId = thread->id;
break;
}
}
//If no threads are available, create a new one
if(alarmThreadId == -1)
{
alarmThreadId = CreateThread(m_alarmThreadProcAddress, 1, DEFAULT_STACKSIZE, 0, 0);
}
StartThread(alarmThreadId, 0);
auto thread = GetThread(alarmThreadId);
thread->context.gpr[CMIPS::SP] -= 0x20;
uint32* delay = reinterpret_cast<uint32*>(m_ram + timePtr);
assert(delay[1] == 0);
*reinterpret_cast<uint32*>(m_ram + thread->context.gpr[CMIPS::SP] + 0x00) = alarmFunction;
*reinterpret_cast<uint32*>(m_ram + thread->context.gpr[CMIPS::SP] + 0x04) = param;
*reinterpret_cast<uint32*>(m_ram + thread->context.gpr[CMIPS::SP] + 0x08) = delay[0];
thread->context.gpr[CMIPS::A0] = thread->context.gpr[CMIPS::SP];
thread->optionData = alarmFunction;
//Returns negative value on failure
return 0;
}
uint32 CIopBios::CancelAlarm(uint32 alarmFunction, uint32 param)
{
//TODO: This needs to garantee that the alarm handler function won't be called after the cancel
uint32 alarmThreadId = -1;
for(auto thread : m_threads)
{
if(!thread) continue;
if(thread->status == THREAD_STATUS_DORMANT) continue;
if(thread->optionData != alarmFunction) continue;
if(thread->threadProc == m_alarmThreadProcAddress)
{
alarmThreadId = thread->id;
break;
}
}
if(alarmThreadId == -1)
{
// handler not registered
return KERNEL_RESULT_ERROR_NOTFOUND_HANDLER;
}
TerminateThread(alarmThreadId);
return 0;
}
int32 CIopBios::ChangeThreadPriority(uint32 threadId, uint32 newPrio)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: ChangeThreadPriority(threadId = %d, newPrio = %d);\r\n",
m_currentThreadId.Get(), threadId, newPrio);
#endif
//Priority needs to be between [1, 126]
if((newPrio < 1) || (newPrio > 126))
{
return KERNEL_RESULT_ERROR_ILLEGAL_PRIORITY;
}
if(threadId == 0)
{
threadId = m_currentThreadId;
}
auto thread = GetThread(threadId);
assert(thread);
if(!thread)
{
return KERNEL_RESULT_ERROR_UNKNOWN_THID;
}
thread->priority = newPrio;
if(thread->status == THREAD_STATUS_RUNNING)
{
UnlinkThread(threadId);
LinkThread(threadId);
}
m_rescheduleNeeded = true;
return KERNEL_RESULT_OK;
}
uint32 CIopBios::ReferThreadStatus(uint32 threadId, uint32 statusPtr, bool inInterrupt)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: ReferThreadStatus(threadId = %d, statusPtr = 0x%08X, inInterrupt = %d);\r\n",
m_currentThreadId.Get(), threadId, statusPtr, inInterrupt);
#endif
if(threadId == 0)
{
threadId = m_currentThreadId;
}
auto thread = m_threads[threadId];
assert(thread);
if(!thread)
{
return KERNEL_RESULT_ERROR_UNKNOWN_THID;
}
uint32 threadStatus = 0;
switch(thread->status)
{
case THREAD_STATUS_DORMANT:
threadStatus = 0x10;
break;
case THREAD_STATUS_SLEEPING:
case THREAD_STATUS_WAITING_MESSAGEBOX:
case THREAD_STATUS_WAITING_EVENTFLAG:
case THREAD_STATUS_WAITING_SEMAPHORE:
case THREAD_STATUS_WAIT_VBLANK_START:
case THREAD_STATUS_WAIT_VBLANK_END:
threadStatus = 0x04;
break;
case THREAD_STATUS_RUNNING:
if(threadId == m_currentThreadId)
{
threadStatus = 0x01;
}
else
{
threadStatus = 0x02;
}
break;
default:
threadStatus = 0;
break;
}
uint32 waitType = 0;
switch(thread->status)
{
case THREAD_STATUS_SLEEPING:
waitType = 1;
break;
case THREAD_STATUS_WAITING_SEMAPHORE:
waitType = 3;
break;
case THREAD_STATUS_WAITING_EVENTFLAG:
waitType = 4;
break;
case THREAD_STATUS_WAITING_MESSAGEBOX:
waitType = 5;
break;
default:
waitType = 0;
break;
}
auto threadInfo = reinterpret_cast<THREAD_INFO*>(m_ram + statusPtr);
threadInfo->option = thread->optionData;
threadInfo->attributes = thread->attributes;
threadInfo->status = threadStatus;
threadInfo->entryPoint = thread->threadProc;
threadInfo->stackAddr = thread->stackBase;
threadInfo->stackSize = thread->stackSize;
threadInfo->initPriority = thread->initPriority;
threadInfo->currentPriority = thread->priority;
threadInfo->waitType = waitType;
return KERNEL_RESULT_OK;
}
int32 CIopBios::SleepThread()
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%i: SleepThread();\r\n",
m_currentThreadId.Get());
#endif
THREAD* thread = GetThread(m_currentThreadId);
if(thread->status != THREAD_STATUS_RUNNING)
{
throw std::runtime_error("Thread isn't running.");
}
if(thread->wakeupCount == 0)
{
thread->status = THREAD_STATUS_SLEEPING;
UnlinkThread(thread->id);
m_rescheduleNeeded = true;
}
else
{
thread->wakeupCount--;
}
return KERNEL_RESULT_OK;
}
uint32 CIopBios::WakeupThread(uint32 threadId, bool inInterrupt)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: WakeupThread(threadId = %d);\r\n",
m_currentThreadId.Get(), threadId);
#endif
auto thread = GetThread(threadId);
if(!thread)
{
CLog::GetInstance().Warn(LOGNAME, "%d: Trying to wakeup a non-existing thread (%d).\r\n",
m_currentThreadId.Get(), threadId);
return KERNEL_RESULT_ERROR_UNKNOWN_THID;
}
if(thread->status == THREAD_STATUS_SLEEPING)
{
thread->status = THREAD_STATUS_RUNNING;
LinkThread(threadId);
if(!inInterrupt)
{
m_rescheduleNeeded = true;
}
}
else
{
thread->wakeupCount++;
}
return thread->wakeupCount;
}
int32 CIopBios::CancelWakeupThread(uint32 threadId, bool inInterrupt)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: CancelWakeupThread(threadId = %d);\r\n",
m_currentThreadId.Get(), threadId);
#endif
if(threadId == 0)
{
threadId = m_currentThreadId;
}
auto thread = GetThread(threadId);
if(!thread)
{
return KERNEL_RESULT_ERROR_UNKNOWN_THID;
}
uint32 result = thread->wakeupCount;
thread->wakeupCount = 0;
return result;
}
int32 CIopBios::RotateThreadReadyQueue(uint32 priority)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: RotateThreadReadyQueue(priority = %d);\r\n",
m_currentThreadId.Get(), priority);
#endif
if(priority == 0)
{
auto thread = GetThread(m_currentThreadId);
priority = thread->priority;
}
uint32 nextThreadId = ThreadLinkHead();
while(nextThreadId != 0)
{
auto nextThread = m_threads[nextThreadId];
if(nextThread->priority == priority)
{
UnlinkThread(nextThreadId);
LinkThread(nextThreadId);
m_rescheduleNeeded = true;
break;
}
nextThreadId = nextThread->nextThreadId;
}
return KERNEL_RESULT_OK;
}
int32 CIopBios::ReleaseWaitThread(uint32 threadId, bool inInterrupt)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: ReleaseWaitThread(threadId = %d);\r\n",
m_currentThreadId.Get(), threadId);
#endif
if(threadId == 0)
{
threadId = m_currentThreadId;
}
if(threadId == m_currentThreadId)
{
return KERNEL_RESULT_ERROR_ILLEGAL_THID;
}
auto thread = GetThread(threadId);
if(!thread)
{
return KERNEL_RESULT_ERROR_UNKNOWN_THID;
}
if(
(thread->status == THREAD_STATUS_RUNNING) ||
(thread->status == THREAD_STATUS_DORMANT))
{
return KERNEL_RESULT_ERROR_NOT_WAIT;
}
switch(thread->status)
{
case THREAD_STATUS_SLEEPING:
//Nothing special to do
break;
case THREAD_STATUS_WAITING_SEMAPHORE:
{
auto semaphore = m_semaphores[thread->waitSemaphore];
assert(semaphore);
assert(semaphore->waitCount != 0);
semaphore->waitCount--;
thread->waitSemaphore = 0;
}
break;
case THREAD_STATUS_WAITING_EVENTFLAG:
thread->waitEventFlag = 0;
thread->waitEventFlagResultPtr = 0;
break;
default:
assert(false);
break;
}
//Update return value for waiting thread
thread->context.gpr[CMIPS::V0] = KERNEL_RESULT_ERROR_RELEASE_WAIT;
thread->status = THREAD_STATUS_RUNNING;
LinkThread(threadId);
if(!inInterrupt)
{
m_rescheduleNeeded = true;
}
return KERNEL_RESULT_OK;
}
int32 CIopBios::RegisterVblankHandler(uint32 startEnd, uint32 priority, uint32 handlerPtr, uint32 handlerParam)
{
assert((startEnd == 0) || (startEnd == 1));
//Make sure interrupt handler is registered
{
uint32 intrLine = startEnd ? Iop::CIntc::LINE_EVBLANK : Iop::CIntc::LINE_VBLANK;
uint32 intrHandlerId = FindIntrHandler(intrLine);
if(intrHandlerId == -1)
{
RegisterIntrHandler(intrLine, 0, m_vblankHandlerAddress, startEnd);
uint32 mask = m_cpu.m_pMemoryMap->GetWord(Iop::CIntc::MASK0);
mask |= (1 << intrLine);
m_cpu.m_pMemoryMap->SetWord(Iop::CIntc::MASK0, mask);
}
}
// Check if the exact handler is already registered
if(FindVblankHandlerByLineAndPtr(startEnd, handlerPtr) != -1)
{
return KERNEL_RESULT_ERROR_FOUND_HANDLER;
}
uint32 handlerId = m_vblankHandlers.Allocate();
if(handlerId == -1)
{
return KERNEL_RESULT_ERROR_NO_MEMORY;
}
auto handler = m_vblankHandlers[handlerId];
assert(handler);
handler->handler = handlerPtr;
handler->arg = handlerParam;
handler->type = startEnd;
return KERNEL_RESULT_OK;
}
int32 CIopBios::ReleaseVblankHandler(uint32 startEnd, uint32 handlerPtr)
{
assert((startEnd == 0) || (startEnd == 1));
uint32 handlerId = FindVblankHandlerByLineAndPtr(startEnd, handlerPtr);
if(handlerId == -1)
{
return KERNEL_RESULT_ERROR_NOTFOUND_HANDLER;
}
m_vblankHandlers.Free(handlerId);
return KERNEL_RESULT_OK;
}
int32 CIopBios::FindVblankHandlerByLineAndPtr(uint32 startEnd, uint32 handlerPtr)
{
uint32 handlerId = -1;
for(unsigned int i = 0; i < MAX_VBLANKHANDLER; i++)
{
if(m_vblankHandlers[i] != nullptr && m_vblankHandlers[i]->handler == handlerPtr && m_vblankHandlers[i]->type == startEnd)
{
handlerId = i;
break;
}
}
return handlerId;
}
void CIopBios::SleepThreadTillVBlankStart()
{
THREAD* thread = GetThread(m_currentThreadId);
thread->status = THREAD_STATUS_WAIT_VBLANK_START;
UnlinkThread(thread->id);
m_rescheduleNeeded = true;
}
void CIopBios::SleepThreadTillVBlankEnd()
{
THREAD* thread = GetThread(m_currentThreadId);
thread->status = THREAD_STATUS_WAIT_VBLANK_END;
UnlinkThread(thread->id);
m_rescheduleNeeded = true;
}
void CIopBios::LoadThreadContext(uint32 threadId)
{
THREAD* thread = GetThread(threadId);
for(unsigned int i = 0; i < 32; i++)
{
if(i == CMIPS::R0) continue;
if(i == CMIPS::K0) continue;
if(i == CMIPS::K1) continue;
m_cpu.m_State.nGPR[i].nD0 = static_cast<int32>(thread->context.gpr[i]);
}
m_cpu.m_State.nLO[0] = thread->context.gpr[CMIPS::K0];
m_cpu.m_State.nHI[0] = thread->context.gpr[CMIPS::K1];
m_cpu.m_State.nPC = thread->context.epc;
m_cpu.m_State.nDelayedJumpAddr = thread->context.delayJump;
}
void CIopBios::SaveThreadContext(uint32 threadId)
{
THREAD* thread = GetThread(threadId);
for(unsigned int i = 0; i < 32; i++)
{
if(i == CMIPS::R0) continue;
if(i == CMIPS::K0) continue;
if(i == CMIPS::K1) continue;
thread->context.gpr[i] = m_cpu.m_State.nGPR[i].nV0;
}
thread->context.gpr[CMIPS::K0] = m_cpu.m_State.nLO[0];
thread->context.gpr[CMIPS::K1] = m_cpu.m_State.nHI[0];
thread->context.epc = m_cpu.m_State.nPC;
thread->context.delayJump = m_cpu.m_State.nDelayedJumpAddr;
}
void CIopBios::LinkThread(uint32 threadId)
{
auto thread = m_threads[threadId];
auto nextThreadId = &ThreadLinkHead();
while(1)
{
assert((*nextThreadId) < MAX_THREAD);
if((*nextThreadId) == 0)
{
(*nextThreadId) = threadId;
thread->nextThreadId = 0;
break;
}
auto currentThread = m_threads[(*nextThreadId)];
if(currentThread->priority > thread->priority)
{
thread->nextThreadId = (*nextThreadId);
(*nextThreadId) = threadId;
break;
}
nextThreadId = &currentThread->nextThreadId;
}
}
void CIopBios::UnlinkThread(uint32 threadId)
{
THREAD* thread = m_threads[threadId];
uint32* nextThreadId = &ThreadLinkHead();
while(1)
{
if((*nextThreadId) == 0)
{
break;
}
THREAD* currentThread = m_threads[(*nextThreadId)];
if((*nextThreadId) == threadId)
{
(*nextThreadId) = thread->nextThreadId;
thread->nextThreadId = 0;
break;
}
nextThreadId = &currentThread->nextThreadId;
}
}
void CIopBios::Reschedule()
{
if((m_cpu.m_State.nCOP0[CCOP_SCU::STATUS] & CMIPS::STATUS_EXL) != 0)
{
return;
}
//Don't switch if interrupts are disabled
if((m_cpu.m_State.nCOP0[CCOP_SCU::STATUS] & CMIPS::STATUS_IE) != CMIPS::STATUS_IE)
{
return;
}
if(m_currentThreadId != -1)
{
SaveThreadContext(m_currentThreadId);
}
uint32 nextThreadId = GetNextReadyThread();
if(nextThreadId == -1)
{
m_cpu.m_State.nPC = m_idleFunctionAddress;
}
else
{
LoadThreadContext(nextThreadId);
}
#ifdef _DEBUG
if(nextThreadId != m_currentThreadId)
{
CLog::GetInstance().Print(LOGNAME, "Switched over to thread %i.\r\n", nextThreadId);
}
#endif
m_currentThreadId = nextThreadId;
}
uint32 CIopBios::GetNextReadyThread()
{
uint32 nextThreadId = ThreadLinkHead();
while(nextThreadId != 0)
{
THREAD* nextThread = m_threads[nextThreadId];
nextThreadId = nextThread->nextThreadId;
if(GetCurrentTime() <= nextThread->nextActivateTime) continue;
assert(nextThread->status == THREAD_STATUS_RUNNING);
return nextThread->id;
}
return -1;
}
uint64 CIopBios::GetCurrentTime() const
{
return CurrentTime();
}
uint64 CIopBios::MilliSecToClock(uint32 value)
{
return (static_cast<uint64>(value) * static_cast<uint64>(PS2::IOP_CLOCK_OVER_FREQ)) / 1000;
}
uint64 CIopBios::MicroSecToClock(uint32 value)
{
return (static_cast<uint64>(value) * static_cast<uint64>(PS2::IOP_CLOCK_OVER_FREQ)) / 1000000;
}
uint64 CIopBios::ClockToMicroSec(uint64 clock)
{
return (clock * 1000000) / static_cast<uint64>(PS2::IOP_CLOCK_OVER_FREQ);
}
void CIopBios::CountTicks(uint32 ticks)
{
CurrentTime() += ticks;
#ifdef _IOP_EMULATE_MODULES
m_cdvdman->CountTicks(ticks);
m_mcserv->CountTicks(ticks, m_sifMan.get());
#endif
}
void CIopBios::NotifyVBlankStart()
{
for(auto thread : m_threads)
{
if(!thread) continue;
if(thread->status == THREAD_STATUS_WAIT_VBLANK_START)
{
thread->status = THREAD_STATUS_RUNNING;
LinkThread(thread->id);
}
}
}
void CIopBios::NotifyVBlankEnd()
{
for(auto thread : m_threads)
{
if(!thread) continue;
if(thread->status == THREAD_STATUS_WAIT_VBLANK_END)
{
thread->status = THREAD_STATUS_RUNNING;
LinkThread(thread->id);
}
}
#ifdef _IOP_EMULATE_MODULES
m_cdvdfsv->ProcessCommands(m_sifMan.get());
m_fileIo->ProcessCommands(m_sifMan.get());
#endif
}
uint32 CIopBios::CreateSemaphore(uint32 initialCount, uint32 maxCount, uint32 optionData, uint32 attributes)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%i: CreateSemaphore(initialCount = %i, maxCount = %i, optionData = 0x%08X, attributes = 0x%08X);\r\n",
m_currentThreadId.Get(), initialCount, maxCount, optionData, attributes);
#endif
uint32 semaphoreId = m_semaphores.Allocate();
assert(semaphoreId != -1);
if(semaphoreId == -1)
{
return -1;
}
auto semaphore = m_semaphores[semaphoreId];
semaphore->count = initialCount;
semaphore->maxCount = maxCount;
semaphore->id = semaphoreId;
semaphore->waitCount = 0;
semaphore->attrib = attributes;
semaphore->option = optionData;
return semaphore->id;
}
uint32 CIopBios::DeleteSemaphore(uint32 semaphoreId)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%i: DeleteSemaphore(semaphoreId = %i);\r\n",
m_currentThreadId.Get(), semaphoreId);
#endif
auto semaphore = m_semaphores[semaphoreId];
if(!semaphore)
{
CLog::GetInstance().Print(LOGNAME, "%i: Warning, trying to access invalid semaphore with id %i.\r\n",
m_currentThreadId.Get(), semaphoreId);
return KERNEL_RESULT_ERROR_UNKNOWN_SEMAID;
}
if(semaphore->waitCount != 0)
{
while(semaphore->waitCount != 0)
{
bool changed = SemaReleaseSingleThread(semaphoreId, true);
if(!changed) break;
}
m_rescheduleNeeded = true;
}
m_semaphores.Free(semaphoreId);
return KERNEL_RESULT_OK;
}
uint32 CIopBios::SignalSemaphore(uint32 semaphoreId, bool inInterrupt)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: SignalSemaphore(semaphoreId = %d, inInterrupt = %d);\r\n",
m_currentThreadId.Get(), semaphoreId, inInterrupt);
#endif
auto semaphore = m_semaphores[semaphoreId];
if(!semaphore)
{
CLog::GetInstance().Print(LOGNAME, "%d: Warning, trying to access invalid semaphore with id %d.\r\n",
m_currentThreadId.Get(), semaphoreId);
return KERNEL_RESULT_ERROR_UNKNOWN_SEMAID;
}
if(semaphore->waitCount != 0)
{
SemaReleaseSingleThread(semaphoreId, false);
if(!inInterrupt)
{
m_rescheduleNeeded = true;
}
}
else
{
if(semaphore->count == semaphore->maxCount)
{
return KERNEL_RESULT_ERROR_SEMA_OVF;
}
else
{
semaphore->count++;
}
}
return KERNEL_RESULT_OK;
}
uint32 CIopBios::WaitSemaphore(uint32 semaphoreId)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: WaitSemaphore(semaphoreId = %d);\r\n",
m_currentThreadId.Get(), semaphoreId);
#endif
auto semaphore = m_semaphores[semaphoreId];
if(!semaphore)
{
CLog::GetInstance().Print(LOGNAME, "%d: Warning, trying to access invalid semaphore with id %d.\r\n",
m_currentThreadId.Get(), semaphoreId);
return KERNEL_RESULT_ERROR_UNKNOWN_SEMAID;
}
if(semaphore->count == 0)
{
uint32 threadId = m_currentThreadId;
THREAD* thread = GetThread(threadId);
thread->status = THREAD_STATUS_WAITING_SEMAPHORE;
thread->waitSemaphore = semaphoreId;
UnlinkThread(threadId);
semaphore->waitCount++;
m_rescheduleNeeded = true;
}
else
{
semaphore->count--;
}
return KERNEL_RESULT_OK;
}
uint32 CIopBios::PollSemaphore(uint32 semaphoreId)
{
CLog::GetInstance().Print(LOGNAME, "%d: PollSemaphore(semaphoreId = %d);\r\n",
m_currentThreadId.Get(), semaphoreId);
auto semaphore = m_semaphores[semaphoreId];
if(!semaphore)
{
return KERNEL_RESULT_ERROR_UNKNOWN_SEMAID;
}
if(semaphore->count == 0)
{
return KERNEL_RESULT_ERROR_SEMA_ZERO;
}
semaphore->count--;
return 0;
}
uint32 CIopBios::ReferSemaphoreStatus(uint32 semaphoreId, uint32 statusPtr)
{
CLog::GetInstance().Print(LOGNAME, "%d: ReferSemaphoreStatus(semaphoreId = %d, statusPtr = 0x%08X);\r\n",
m_currentThreadId.Get(), semaphoreId, statusPtr);
auto semaphore = m_semaphores[semaphoreId];
if(semaphore == nullptr)
{
return -1;
}
auto status = reinterpret_cast<SEMAPHORE_STATUS*>(m_ram + statusPtr);
status->attrib = semaphore->attrib;
status->option = semaphore->option;
status->initCount = 0;
status->maxCount = semaphore->maxCount;
status->currentCount = semaphore->count;
status->numWaitThreads = semaphore->waitCount;
return 0;
}
bool CIopBios::SemaReleaseSingleThread(uint32 semaphoreId, bool deleted)
{
auto semaphore = m_semaphores[semaphoreId];
assert(semaphore);
assert(semaphore->waitCount != 0);
bool changed = false;
for(auto thread : m_threads)
{
if(!thread) continue;
if(thread->waitSemaphore == semaphoreId)
{
assert(thread->status == THREAD_STATUS_WAITING_SEMAPHORE);
thread->context.gpr[CMIPS::V0] = deleted ? KERNEL_RESULT_ERROR_WAIT_DELETE : KERNEL_RESULT_OK;
thread->status = THREAD_STATUS_RUNNING;
LinkThread(thread->id);
thread->waitSemaphore = 0;
semaphore->waitCount--;
changed = true;
break;
}
}
//Something went wrong if nothing changed
assert(changed);
return changed;
}
uint32 CIopBios::CreateEventFlag(uint32 attributes, uint32 options, uint32 initValue)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: CreateEventFlag(attr = 0x%08X, opt = 0x%08X, initValue = 0x%08X);\r\n",
m_currentThreadId.Get(), attributes, options, initValue);
#endif
uint32 eventId = m_eventFlags.Allocate();
assert(eventId != -1);
if(eventId == -1)
{
return -1;
}
EVENTFLAG* eventFlag = m_eventFlags[eventId];
eventFlag->id = eventId;
eventFlag->value = initValue;
eventFlag->options = options;
eventFlag->attributes = attributes;
return eventFlag->id;
}
uint32 CIopBios::DeleteEventFlag(uint32 eventId)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: DeleteEventFlag(eventId = %d);\r\n",
m_currentThreadId.Get(), eventId);
#endif
auto eventFlag = m_eventFlags[eventId];
if(!eventFlag)
{
CLog::GetInstance().Print(LOGNAME, "%d: Warning, trying to access invalid event flag with id %d.\r\n",
m_currentThreadId.Get(), eventId);
return KERNEL_RESULT_ERROR_UNKNOWN_EVFID;
}
m_eventFlags.Free(eventId);
return KERNEL_RESULT_OK;
}
uint32 CIopBios::SetEventFlag(uint32 eventId, uint32 value, bool inInterrupt)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: SetEventFlag(eventId = %d, value = 0x%08X, inInterrupt = %d);\r\n",
m_currentThreadId.Get(), eventId, value, inInterrupt);
#endif
auto eventFlag = m_eventFlags[eventId];
if(eventFlag == nullptr)
{
return -1;
}
eventFlag->value |= value;
//Check all threads waiting for this event
for(auto thread : m_threads)
{
if(!thread) continue;
if(thread->status != THREAD_STATUS_WAITING_EVENTFLAG) continue;
if(thread->waitEventFlag == eventId)
{
bool success = ProcessEventFlag(thread->waitEventFlagMode, eventFlag->value, thread->waitEventFlagMask,
(thread->waitEventFlagResultPtr != 0) ? reinterpret_cast<uint32*>(m_ram + thread->waitEventFlagResultPtr) : nullptr);
if(success)
{
thread->waitEventFlag = 0;
thread->waitEventFlagResultPtr = 0;
thread->status = THREAD_STATUS_RUNNING;
LinkThread(thread->id);
if(!inInterrupt)
{
m_rescheduleNeeded = true;
}
}
}
}
return 0;
}
uint32 CIopBios::ClearEventFlag(uint32 eventId, uint32 value)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: ClearEventFlag(eventId = %d, value = 0x%08X);\r\n",
m_currentThreadId.Get(), eventId, value);
#endif
EVENTFLAG* eventFlag = m_eventFlags[eventId];
if(eventFlag == NULL)
{
return -1;
}
eventFlag->value &= value;
return 0;
}
uint32 CIopBios::WaitEventFlag(uint32 eventId, uint32 value, uint32 mode, uint32 resultPtr)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: WaitEventFlag(eventId = %d, value = 0x%08X, mode = 0x%02X, resultPtr = 0x%08X);\r\n",
m_currentThreadId.Get(), eventId, value, mode, resultPtr);
#endif
auto eventFlag = m_eventFlags[eventId];
if(eventFlag == nullptr)
{
return -1;
}
bool success = ProcessEventFlag(mode, eventFlag->value, value,
(resultPtr != 0) ? reinterpret_cast<uint32*>(m_ram + resultPtr) : nullptr);
if(!success)
{
auto thread = GetThread(m_currentThreadId);
thread->status = THREAD_STATUS_WAITING_EVENTFLAG;
UnlinkThread(thread->id);
thread->waitEventFlag = eventId;
thread->waitEventFlagMode = mode;
thread->waitEventFlagMask = value;
thread->waitEventFlagResultPtr = resultPtr;
m_rescheduleNeeded = true;
}
return 0;
}
uint32 CIopBios::PollEventFlag(uint32 eventId, uint32 value, uint32 mode, uint32 resultPtr)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: PollEventFlag(eventId = %d, value = 0x%08X, mode = 0x%02X, resultPtr = 0x%08X);\r\n",
m_currentThreadId.Get(), eventId, value, mode, resultPtr);
#endif
auto eventFlag = m_eventFlags[eventId];
if(!eventFlag)
{
return KERNEL_RESULT_ERROR_UNKNOWN_EVFID;
}
if(value == 0)
{
return KERNEL_RESULT_ERROR_EVF_ILLEGAL_PAT;
}
bool success = ProcessEventFlag(mode, eventFlag->value, value,
(resultPtr != 0) ? reinterpret_cast<uint32*>(m_ram + resultPtr) : nullptr);
if(!success)
{
return KERNEL_RESULT_ERROR_EVF_CONDITION;
}
return KERNEL_RESULT_OK;
}
uint32 CIopBios::ReferEventFlagStatus(uint32 eventId, uint32 infoPtr)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: ReferEventFlagStatus(eventId = %d, infoPtr = 0x%08X);\r\n",
m_currentThreadId.Get(), eventId, infoPtr);
#endif
EVENTFLAG* eventFlag = m_eventFlags[eventId];
if(eventFlag == NULL)
{
return -1;
}
if(infoPtr == 0)
{
return -1;
}
EVENTFLAGINFO* eventFlagInfo(reinterpret_cast<EVENTFLAGINFO*>(m_ram + infoPtr));
eventFlagInfo->attributes = eventFlag->attributes;
eventFlagInfo->options = eventFlag->options;
eventFlagInfo->initBits = 0;
eventFlagInfo->currBits = eventFlag->value;
eventFlagInfo->numThreads = 0;
return 0;
}
bool CIopBios::ProcessEventFlag(uint32 mode, uint32& value, uint32 mask, uint32* resultPtr)
{
bool success = false;
uint32 maskResult = value & mask;
if(mode & WEF_OR)
{
success = (maskResult != 0);
}
else
{
success = (maskResult == mask);
}
if(success)
{
if(resultPtr)
{
*resultPtr = value;
}
if(mode & WEF_CLEAR)
{
value = 0;
}
}
return success;
}
uint32 CIopBios::CreateMessageBox()
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: CreateMessageBox();\r\n",
m_currentThreadId.Get());
#endif
uint32 boxId = m_messageBoxes.Allocate();
assert(boxId != -1);
if(boxId == -1)
{
return -1;
}
auto box = m_messageBoxes[boxId];
box->nextMsgPtr = 0;
box->numMessage = 0;
return boxId;
}
uint32 CIopBios::DeleteMessageBox(uint32 boxId)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: DeleteMessageBox(boxId = %d);\r\n",
m_currentThreadId.Get(), boxId);
#endif
auto box = m_messageBoxes[boxId];
if(!box)
{
return KERNEL_RESULT_ERROR_UNKNOWN_MBXID;
}
m_messageBoxes.Free(boxId);
return KERNEL_RESULT_OK;
}
uint32 CIopBios::SendMessageBox(uint32 boxId, uint32 messagePtr, bool inInterrupt)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: SendMessageBox(boxId = %d, messagePtr = 0x%08X, inInterrupt = %d);\r\n",
m_currentThreadId.Get(), boxId, messagePtr, inInterrupt);
#endif
auto box = m_messageBoxes[boxId];
if(!box)
{
return KERNEL_RESULT_ERROR_UNKNOWN_MBXID;
}
//Check if there's a thread waiting for a message first
for(auto thread : m_threads)
{
if(!thread) continue;
if(thread->status != THREAD_STATUS_WAITING_MESSAGEBOX) continue;
if(thread->waitMessageBox == boxId)
{
if(thread->waitMessageBoxResultPtr != 0)
{
uint32* result = reinterpret_cast<uint32*>(m_ram + thread->waitMessageBoxResultPtr);
*result = messagePtr;
}
thread->waitMessageBox = 0;
thread->waitMessageBoxResultPtr = 0;
thread->status = THREAD_STATUS_RUNNING;
LinkThread(thread->id);
if(!inInterrupt)
{
m_rescheduleNeeded = true;
}
return KERNEL_RESULT_OK;
}
}
auto header = reinterpret_cast<MESSAGE_HEADER*>(m_ram + messagePtr);
header->nextMsgPtr = 0;
auto msgPtr = &box->nextMsgPtr;
while(1)
{
if((*msgPtr) == 0)
{
(*msgPtr) = messagePtr;
break;
}
msgPtr = reinterpret_cast<uint32*>(m_ram + *msgPtr);
}
box->numMessage++;
return KERNEL_RESULT_OK;
}
uint32 CIopBios::ReceiveMessageBox(uint32 messagePtr, uint32 boxId)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: ReceiveMessageBox(messagePtr = 0x%08X, boxId = %d);\r\n",
m_currentThreadId.Get(), messagePtr, boxId);
#endif
auto box = m_messageBoxes[boxId];
if(!box)
{
return KERNEL_RESULT_ERROR_UNKNOWN_MBXID;
}
if(box->numMessage != 0)
{
uint32* message = reinterpret_cast<uint32*>(m_ram + messagePtr);
(*message) = box->nextMsgPtr;
//Unlink message
auto header = reinterpret_cast<MESSAGE_HEADER*>(m_ram + box->nextMsgPtr);
box->nextMsgPtr = header->nextMsgPtr;
box->numMessage--;
}
else
{
THREAD* thread = GetThread(m_currentThreadId);
thread->status = THREAD_STATUS_WAITING_MESSAGEBOX;
UnlinkThread(thread->id);
thread->waitMessageBox = boxId;
thread->waitMessageBoxResultPtr = messagePtr;
m_rescheduleNeeded = true;
}
return KERNEL_RESULT_OK;
}
uint32 CIopBios::PollMessageBox(uint32 messagePtr, uint32 boxId)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: PollMessageBox(messagePtr = 0x%08X, boxId = %d);\r\n",
m_currentThreadId.Get(), messagePtr, boxId);
#endif
auto box = m_messageBoxes[boxId];
if(!box)
{
return KERNEL_RESULT_ERROR_UNKNOWN_MBXID;
}
if(box->numMessage == 0)
{
return KERNEL_RESULT_ERROR_MBX_NOMSG;
}
auto message = reinterpret_cast<uint32*>(m_ram + messagePtr);
(*message) = box->nextMsgPtr;
//Unlink message
auto header = reinterpret_cast<MESSAGE_HEADER*>(m_ram + box->nextMsgPtr);
box->nextMsgPtr = header->nextMsgPtr;
box->numMessage--;
return KERNEL_RESULT_OK;
}
uint32 CIopBios::ReferMessageBoxStatus(uint32 boxId, uint32 statusPtr)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOGNAME, "%d: ReferMessageBox(boxId = %d, statusPtr = 0x%08X);\r\n",
m_currentThreadId.Get(), boxId, statusPtr);
#endif
auto box = m_messageBoxes[boxId];
if(!box)
{
return KERNEL_RESULT_ERROR_UNKNOWN_MBXID;
}
auto status = reinterpret_cast<MESSAGEBOX_STATUS*>(m_ram + statusPtr);
status->attr = 0;
status->option = 0;
status->numMessage = box->numMessage;
status->numWaitThread = 0;
status->messagePtr = box->nextMsgPtr;
return KERNEL_RESULT_OK;
}
uint32 CIopBios::CreateFpl(uint32 paramPtr)
{
auto param = reinterpret_cast<FPL_PARAM*>(m_ram + paramPtr);
if((param->attr & ~FPL_ATTR_VALID_MASK) != 0)
{
return KERNEL_RESULT_ERROR_ILLEGAL_ATTR;
}
auto fplId = m_fpls.Allocate();
assert(fplId != FplList::INVALID_ID);
if(fplId == FplList::INVALID_ID)
{
return -1;
}
uint32 bitmapSize = (param->blockCount + 7) / 8;
uint32 totalSize = (param->blockCount * param->blockSize) + bitmapSize;
uint32 poolPtr = m_sysmem->AllocateMemory(totalSize, 0, 0);
if(poolPtr == 0)
{
m_fpls.Free(fplId);
return KERNEL_RESULT_ERROR_NO_MEMORY;
}
auto fpl = m_fpls[fplId];
fpl->attr = param->attr;
fpl->option = param->option;
fpl->blockCount = param->blockCount;
fpl->blockSize = param->blockSize;
fpl->poolPtr = poolPtr;
return fplId;
}
uint32 CIopBios::DeleteFpl(uint32 fplId)
{
auto fpl = m_fpls[fplId];
if(!fpl)
{
return KERNEL_RESULT_ERROR_UNKNOWN_FPLID;
}
m_sysmem->FreeMemory(fpl->poolPtr);
m_fpls.Free(fplId);
return KERNEL_RESULT_OK;
}
uint32 CIopBios::AllocateFpl(uint32 fplId)
{
uint32 result = pAllocateFpl(fplId);
if(result == KERNEL_RESULT_ERROR_NO_MEMORY)
{
CLog::GetInstance().Warn(LOGNAME, "No memory left while calling AllocateFpl, should be waiting. (not implemented)");
assert(false);
}
return result;
}
uint32 CIopBios::pAllocateFpl(uint32 fplId)
{
auto fpl = m_fpls[fplId];
if(!fpl)
{
return KERNEL_RESULT_ERROR_UNKNOWN_FPLID;
}
uint32 bitmapPtr = (fpl->blockCount * fpl->blockSize);
auto bitmap = m_ram + fpl->poolPtr + bitmapPtr;
for(uint32 blockIdx = 0; blockIdx < fpl->blockCount; blockIdx++)
{
uint32 bitmapByteIdx = blockIdx / 8;
uint32 bitmapBitMask = 1 << (blockIdx % 8);
uint8& bitmapByte = bitmap[bitmapByteIdx];
if(bitmapByte & bitmapBitMask) continue;
bitmapByte |= bitmapBitMask;
return fpl->poolPtr + (blockIdx * fpl->blockSize);
}
return KERNEL_RESULT_ERROR_NO_MEMORY;
}
uint32 CIopBios::FreeFpl(uint32 fplId, uint32 blockPtr)
{
auto fpl = m_fpls[fplId];
if(!fpl)
{
return KERNEL_RESULT_ERROR_UNKNOWN_FPLID;
}
if(blockPtr < fpl->poolPtr)
{
return KERNEL_RESULT_ERROR_ILLEGAL_MEMBLOCK;
}
uint32 blockIdx = (blockPtr - fpl->poolPtr) / fpl->blockSize;
if(blockIdx >= fpl->blockCount)
{
return KERNEL_RESULT_ERROR_ILLEGAL_MEMBLOCK;
}
uint32 bitmapPtr = (fpl->blockCount * fpl->blockSize);
auto bitmap = m_ram + fpl->poolPtr + bitmapPtr;
uint32 bitmapByteIdx = blockIdx / 8;
uint32 bitmapBitMask = 1 << (blockIdx % 8);
bitmap[bitmapByteIdx] &= ~bitmapBitMask;
return KERNEL_RESULT_OK;
}
uint32 CIopBios::CreateVpl(uint32 paramPtr)
{
auto param = reinterpret_cast<VPL_PARAM*>(m_ram + paramPtr);
if((param->attr & ~VPL_ATTR_VALID_MASK) != 0)
{
return KERNEL_RESULT_ERROR_ILLEGAL_ATTR;
}
auto vplId = m_vpls.Allocate();
assert(vplId != VplList::INVALID_ID);
if(vplId == VplList::INVALID_ID)
{
return -1;
}
auto headBlockId = m_memoryBlocks.Allocate();
assert(headBlockId != MemoryBlockList::INVALID_ID);
if(headBlockId == MemoryBlockList::INVALID_ID)
{
m_vpls.Free(vplId);
return -1;
}
uint32 poolPtr = m_sysmem->AllocateMemory(param->size, 0, 0);
if(poolPtr == 0)
{
//This seems to work on actual hardware (maybe fixed in later revisions)
m_memoryBlocks.Free(headBlockId);
m_vpls.Free(vplId);
return KERNEL_RESULT_ERROR_NO_MEMORY;
}
auto vpl = m_vpls[vplId];
vpl->attr = param->attr;
vpl->option = param->option;
vpl->poolPtr = poolPtr;
vpl->size = param->size;
vpl->headBlockId = headBlockId;
auto headBlock = m_memoryBlocks[headBlockId];
headBlock->nextBlockId = MemoryBlockList::INVALID_ID;
headBlock->address = vpl->size;
headBlock->size = 0;
return vplId;
}
uint32 CIopBios::DeleteVpl(uint32 vplId)
{
auto vpl = m_vpls[vplId];
if(!vpl)
{
return KERNEL_RESULT_ERROR_UNKNOWN_VPLID;
}
m_sysmem->FreeMemory(vpl->poolPtr);
//Free blocks
auto nextBlockId = vpl->headBlockId;
auto nextBlock = m_memoryBlocks[nextBlockId];
while(nextBlock != nullptr)
{
uint32 currentBlockId = nextBlockId;
nextBlockId = nextBlock->nextBlockId;
nextBlock = m_memoryBlocks[nextBlockId];
m_memoryBlocks.Free(currentBlockId);
}
m_vpls.Free(vplId);
return 0;
}
uint32 CIopBios::pAllocateVpl(uint32 vplId, uint32 size)
{
auto vpl = m_vpls[vplId];
if(!vpl)
{
return KERNEL_RESULT_ERROR_UNKNOWN_VPLID;
}
//Aligned to 8 bytes
int32 allocSize = (size + 7) & ~0x07;
if(allocSize < 0)
{
return KERNEL_RESULT_ERROR_NO_MEMORY;
}
uint32 freeSize = GetVplFreeSize(vplId);
if(allocSize > freeSize)
{
return KERNEL_RESULT_ERROR_NO_MEMORY;
}
uint32 begin = 0;
auto nextBlockId = &vpl->headBlockId;
auto nextBlock = m_memoryBlocks[*nextBlockId];
while(nextBlock != nullptr)
{
uint32 end = nextBlock->address;
if((end - begin) >= allocSize)
{
break;
}
begin = nextBlock->address + nextBlock->size;
nextBlockId = &nextBlock->nextBlockId;
nextBlock = m_memoryBlocks[*nextBlockId];
}
if(nextBlock != nullptr)
{
uint32 newBlockId = m_memoryBlocks.Allocate();
assert(newBlockId != MemoryBlockList::INVALID_ID);
if(newBlockId == MemoryBlockList::INVALID_ID)
{
return -1;
}
auto newBlock = m_memoryBlocks[newBlockId];
newBlock->address = begin;
newBlock->size = allocSize;
newBlock->nextBlockId = *nextBlockId;
*nextBlockId = newBlockId;
return begin + vpl->poolPtr;
}
return KERNEL_RESULT_ERROR_ILLEGAL_MEMSIZE;
}
uint32 CIopBios::FreeVpl(uint32 vplId, uint32 ptr)
{
auto vpl = m_vpls[vplId];
if(!vpl)
{
return KERNEL_RESULT_ERROR_UNKNOWN_VPLID;
}
ptr -= vpl->poolPtr;
//Search for block pointing at the address
auto nextBlockId = &vpl->headBlockId;
auto nextBlock = m_memoryBlocks[*nextBlockId];
while(nextBlock != nullptr)
{
if(nextBlock->address == ptr)
{
break;
}
nextBlockId = &nextBlock->nextBlockId;
nextBlock = m_memoryBlocks[*nextBlockId];
}
if(nextBlock != nullptr)
{
m_memoryBlocks.Free(*nextBlockId);
*nextBlockId = nextBlock->nextBlockId;
}
else
{
return -1;
}
return KERNEL_RESULT_OK;
}
uint32 CIopBios::ReferVplStatus(uint32 vplId, uint32 statPtr)
{
auto vpl = m_vpls[vplId];
if(!vpl)
{
return KERNEL_RESULT_ERROR_UNKNOWN_VPLID;
}
uint32 size = vpl->size - 40;
uint32 freeSize = GetVplFreeSize(vplId);
auto stat = reinterpret_cast<VPL_STATUS*>(m_ram + statPtr);
stat->attr = vpl->attr;
stat->option = vpl->option;
stat->size = size;
stat->freeSize = freeSize;
return 0;
}
uint32 CIopBios::GetVplFreeSize(uint32 vplId)
{
auto vpl = m_vpls[vplId];
assert(vpl != nullptr);
if(!vpl)
{
return 0;
}
uint32 size = vpl->size - 40;
uint32 freeSize = size;
auto nextBlockId = vpl->headBlockId;
auto nextBlock = m_memoryBlocks[nextBlockId];
while(nextBlock != nullptr)
{
if(nextBlock->nextBlockId == MemoryBlockList::INVALID_ID)
{
assert(nextBlock->address == vpl->size);
break;
}
freeSize -= nextBlock->size;
freeSize -= 8;
nextBlockId = nextBlock->nextBlockId;
nextBlock = m_memoryBlocks[nextBlockId];
}
return freeSize;
}
void CIopBios::WaitCdSync()
{
uint32 threadId = m_currentThreadId;
auto thread = GetThread(threadId);
thread->status = THREAD_STATUS_WAIT_CDSYNC;
UnlinkThread(threadId);
m_rescheduleNeeded = true;
}
void CIopBios::ReleaseWaitCdSync()
{
for(auto thread : m_threads)
{
if(!thread) continue;
if(thread->status != THREAD_STATUS_WAIT_CDSYNC) continue;
thread->status = THREAD_STATUS_RUNNING;
LinkThread(thread->id);
}
}
Iop::CSysmem* CIopBios::GetSysmem()
{
return m_sysmem.get();
}
Iop::CIoman* CIopBios::GetIoman()
{
return m_ioman.get();
}
Iop::CSifMan* CIopBios::GetSifman()
{
return m_sifMan.get();
}
Iop::CSifCmd* CIopBios::GetSifcmd()
{
return m_sifCmd.get();
}
Iop::CCdvdman* CIopBios::GetCdvdman()
{
return m_cdvdman.get();
}
Iop::CLoadcore* CIopBios::GetLoadcore()
{
return m_loadcore.get();
}
#ifdef _IOP_EMULATE_MODULES
Iop::CPadMan* CIopBios::GetPadman()
{
return m_padman.get();
}
Iop::CCdvdfsv* CIopBios::GetCdvdfsv()
{
return m_cdvdfsv.get();
}
Iop::CMcServ* CIopBios::GetMcServ()
{
return static_cast<Iop::CMcServ*>(m_mcserv.get());
}
#endif
int32 CIopBios::RegisterIntrHandler(uint32 line, uint32 mode, uint32 handler, uint32 arg)
{
assert(FindIntrHandler(line) == -1);
if(FindIntrHandler(line) != -1)
{
return KERNEL_RESULT_ERROR_FOUND_HANDLER;
}
if(line >= Iop::CIntc::LINES_MAX)
{
return KERNEL_RESULT_ERROR_ILLEGAL_INTRCODE;
}
//Registering a null handler is a no-op
if(handler == 0)
{
return KERNEL_RESULT_OK;
}
uint32 handlerId = m_intrHandlers.Allocate();
assert(handlerId != -1);
if(handlerId == -1)
{
return KERNEL_RESULT_ERROR;
}
auto intrHandler = m_intrHandlers[handlerId];
intrHandler->line = line;
intrHandler->mode = mode;
intrHandler->handler = handler;
intrHandler->arg = arg;
return KERNEL_RESULT_OK;
}
int32 CIopBios::ReleaseIntrHandler(uint32 line)
{
if(line >= Iop::CIntc::LINES_MAX)
{
return KERNEL_RESULT_ERROR_ILLEGAL_INTRCODE;
}
uint32 handlerId = FindIntrHandler(line);
if(handlerId == -1)
{
return KERNEL_RESULT_ERROR_NOTFOUND_HANDLER;
}
m_intrHandlers.Free(handlerId);
return KERNEL_RESULT_OK;
}
int32 CIopBios::FindIntrHandler(uint32 line)
{
for(auto handlerIterator = std::begin(m_intrHandlers); handlerIterator != std::end(m_intrHandlers); handlerIterator++)
{
auto handler = m_intrHandlers[handlerIterator];
if(!handler) continue;
if(handler->line == line) return handlerIterator;
}
return -1;
}
uint32 CIopBios::AssembleThreadFinish(CMIPSAssembler& assembler)
{
uint32 address = BIOS_HANDLERS_BASE + assembler.GetProgramSize() * 4;
assembler.ADDIU(CMIPS::V0, CMIPS::R0, SYSCALL_EXITTHREAD);
assembler.SYSCALL();
return address;
}
uint32 CIopBios::AssembleReturnFromException(CMIPSAssembler& assembler)
{
uint32 address = BIOS_HANDLERS_BASE + assembler.GetProgramSize() * 4;
assembler.ADDIU(CMIPS::V0, CMIPS::R0, SYSCALL_RETURNFROMEXCEPTION);
assembler.SYSCALL();
return address;
}
uint32 CIopBios::AssembleIdleFunction(CMIPSAssembler& assembler)
{
uint32 address = BIOS_HANDLERS_BASE + assembler.GetProgramSize() * 4;
assembler.ADDIU(CMIPS::V0, CMIPS::R0, SYSCALL_RESCHEDULE);
assembler.SYSCALL();
return address;
}
uint32 CIopBios::AssembleModuleStarterProc(CMIPSAssembler& assembler)
{
uint32 address = BIOS_HANDLERS_BASE + assembler.GetProgramSize() * 4;
//PROCESSMODULESTART sets some state in S0, S1, S2, S3 that is required by FINISHMODULESTART
assembler.ADDIU(CMIPS::V0, CMIPS::R0, SYSCALL_PROCESSMODULESTART);
assembler.SYSCALL();
//Save module start/stop result
assembler.ADDIU(CMIPS::S4, CMIPS::V0, CMIPS::R0);
//Wait a little bit before reporting result. If we initialize/load modules too fast,
//there's a chance the current module won't have time to complete its init (through threads)
//properly before another module starts. Capcom vs SNK2 has this problem where multiple
//modules will call SdInit, but the order in which they are called is important.
//Shin Megami Tensei: Nocturne is also sensitive to this delay.
assembler.LI(CMIPS::A0, 0x4000);
assembler.ADDIU(CMIPS::V0, CMIPS::R0, SYSCALL_DELAYTHREADTICKS);
assembler.SYSCALL();
//Restore module start/stop result
assembler.ADDU(CMIPS::A0, CMIPS::S4, CMIPS::R0);
assembler.ADDIU(CMIPS::V0, CMIPS::R0, SYSCALL_FINISHMODULESTART);
assembler.SYSCALL();
return address;
}
uint32 CIopBios::AssembleAlarmThreadProc(CMIPSAssembler& assembler)
{
uint32 address = BIOS_HANDLERS_BASE + assembler.GetProgramSize() * 4;
auto delayThreadLabel = assembler.CreateLabel();
//Prolog
assembler.ADDIU(CMIPS::SP, CMIPS::SP, 0xFF80);
assembler.SW(CMIPS::RA, 0x10, CMIPS::SP);
assembler.SW(CMIPS::S0, 0x14, CMIPS::SP);
assembler.MOV(CMIPS::S0, CMIPS::A0); //S0 has the info struct ptr
//Delay thread
assembler.MarkLabel(delayThreadLabel);
assembler.LW(CMIPS::A0, 0x08, CMIPS::S0);
assembler.ADDIU(CMIPS::V0, CMIPS::R0, SYSCALL_DELAYTHREADTICKS);
assembler.SYSCALL();
//Call handler
assembler.LW(CMIPS::V0, 0x00, CMIPS::S0);
assembler.JALR(CMIPS::V0);
assembler.LW(CMIPS::A0, 0x04, CMIPS::S0);
assembler.BNE(CMIPS::V0, CMIPS::R0, delayThreadLabel);
assembler.SW(CMIPS::V0, 0x08, CMIPS::S0);
//Epilog
assembler.LW(CMIPS::S0, 0x14, CMIPS::SP);
assembler.LW(CMIPS::RA, 0x10, CMIPS::SP);
assembler.JR(CMIPS::RA);
assembler.ADDIU(CMIPS::SP, CMIPS::SP, 0x0080);
return address;
}
uint32 CIopBios::AssembleVblankHandler(CMIPSAssembler& assembler)
{
uint32 address = BIOS_HANDLERS_BASE + assembler.GetProgramSize() * 4;
auto checkHandlerLabel = assembler.CreateLabel();
auto moveToNextHandlerLabel = assembler.CreateLabel();
int16 stackAlloc = 0x80;
//Prolog
assembler.ADDIU(CMIPS::SP, CMIPS::SP, -stackAlloc);
assembler.SW(CMIPS::RA, 0x10, CMIPS::SP);
assembler.SW(CMIPS::S0, 0x14, CMIPS::SP);
assembler.MOV(CMIPS::S0, CMIPS::A0); //S0 = type
assembler.MOV(CMIPS::S1, CMIPS::R0); //S1 = counter
assembler.MarkLabel(checkHandlerLabel);
assembler.LI(CMIPS::T0, BIOS_VBLANKHANDLER_BASE);
assembler.SLL(CMIPS::T1, CMIPS::S1, 4); //Multiples of 0x10 bytes
assembler.ADDU(CMIPS::T0, CMIPS::T0, CMIPS::T1);
//Check isValid
assembler.LW(CMIPS::T1, offsetof(VBLANKHANDLER, isValid), CMIPS::T0);
assembler.BEQ(CMIPS::T1, CMIPS::R0, moveToNextHandlerLabel);
assembler.NOP();
//Check type
assembler.LW(CMIPS::T1, offsetof(VBLANKHANDLER, type), CMIPS::T0);
assembler.BNE(CMIPS::T1, CMIPS::S0, moveToNextHandlerLabel);
assembler.NOP();
assembler.LW(CMIPS::T1, offsetof(VBLANKHANDLER, handler), CMIPS::T0);
assembler.JALR(CMIPS::T1);
assembler.LW(CMIPS::A0, offsetof(VBLANKHANDLER, arg), CMIPS::T0);
//TODO: Check return value
assembler.MarkLabel(moveToNextHandlerLabel);
assembler.ADDIU(CMIPS::S1, CMIPS::S1, 1);
assembler.SLTIU(CMIPS::T0, CMIPS::S1, MAX_VBLANKHANDLER);
assembler.BNE(CMIPS::T0, CMIPS::R0, checkHandlerLabel);
assembler.NOP();
//Epilog
assembler.LW(CMIPS::S0, 0x14, CMIPS::SP);
assembler.LW(CMIPS::RA, 0x10, CMIPS::SP);
assembler.JR(CMIPS::RA);
assembler.ADDIU(CMIPS::SP, CMIPS::SP, stackAlloc);
return address;
}
void CIopBios::HandleException()
{
assert(m_cpu.m_State.nHasException == MIPS_EXCEPTION_SYSCALL);
m_rescheduleNeeded = false;
uint32 searchAddress = m_cpu.m_pAddrTranslator(&m_cpu, m_cpu.m_State.nCOP0[CCOP_SCU::EPC]);
uint32 callInstruction = m_cpu.m_pMemoryMap->GetWord(searchAddress);
if(callInstruction == 0x0000000C)
{
switch(m_cpu.m_State.nGPR[CMIPS::V0].nV0)
{
case SYSCALL_EXITTHREAD:
ExitThread();
break;
case SYSCALL_RETURNFROMEXCEPTION:
ReturnFromException();
break;
case SYSCALL_RESCHEDULE:
Reschedule();
break;
case SYSCALL_SLEEPTHREAD:
SleepThread();
break;
case SYSCALL_PROCESSMODULESTART:
ProcessModuleStart();
break;
case SYSCALL_FINISHMODULESTART:
FinishModuleStart();
break;
case SYSCALL_DELAYTHREADTICKS:
DelayThreadTicks(m_cpu.m_State.nGPR[CMIPS::A0].nV0);
break;
}
}
else
{
//Search for the import record
uint32 instruction = callInstruction;
while(instruction != 0x41E00000)
{
searchAddress -= 4;
instruction = m_cpu.m_pMemoryMap->GetWord(searchAddress);
}
uint32 functionId = callInstruction & 0xFFFF;
FRAMEWORK_MAYBE_UNUSED uint32 version = m_cpu.m_pMemoryMap->GetWord(searchAddress + 8);
std::string moduleName = ReadModuleName(searchAddress + 0x0C);
#ifdef _DEBUG
if(moduleName == "libsd")
{
Iop::CLibSd::TraceCall(m_cpu, functionId);
}
#endif
auto module(m_modules.find(moduleName));
if(module != m_modules.end())
{
module->second->Invoke(m_cpu, functionId);
}
else
{
#ifdef _DEBUG
CLog::GetInstance().Warn(LOGNAME, "%08X: Trying to call a function from non-existing module (%s, %d).\r\n",
m_cpu.m_State.nPC, moduleName.c_str(), functionId);
#endif
}
}
if(m_rescheduleNeeded)
{
assert((m_cpu.m_State.nCOP0[CCOP_SCU::STATUS] & CMIPS::STATUS_EXL) == 0);
m_rescheduleNeeded = false;
Reschedule();
}
m_cpu.m_State.nHasException = 0;
}
void CIopBios::HandleInterrupt()
{
if(m_cpu.GenerateInterrupt(m_cpu.m_State.nPC))
{
//Find first concerned interrupt
UNION64_32 status(
m_cpu.m_pMemoryMap->GetWord(Iop::CIntc::STATUS0),
m_cpu.m_pMemoryMap->GetWord(Iop::CIntc::STATUS1));
UNION64_32 mask(
m_cpu.m_pMemoryMap->GetWord(Iop::CIntc::MASK0),
m_cpu.m_pMemoryMap->GetWord(Iop::CIntc::MASK1));
status.f &= mask.f;
assert(status.f != 0);
if(status.f == 0)
{
ReturnFromException();
return;
}
uint32 line = __builtin_ctzll(status.f);
status.f = ~(1ULL << line);
m_cpu.m_pMemoryMap->SetWord(Iop::CIntc::STATUS0, status.h0);
m_cpu.m_pMemoryMap->SetWord(Iop::CIntc::STATUS1, status.h1);
//Check if there's an handler to call
{
uint32 handlerId = FindIntrHandler(line);
if(handlerId == -1)
{
ReturnFromException();
return;
}
else
{
//Snap out of current thread
if(m_currentThreadId != -1)
{
SaveThreadContext(m_currentThreadId);
}
m_currentThreadId = -1;
auto handler = m_intrHandlers[handlerId];
m_cpu.m_State.nPC = handler->handler;
m_cpu.m_State.nGPR[CMIPS::SP].nD0 = (BIOS_INTSTACK_BASE + BIOS_INTSTACK_SIZE) - STACK_FRAME_RESERVE_SIZE;
m_cpu.m_State.nGPR[CMIPS::A0].nD0 = static_cast<int32>(handler->arg);
m_cpu.m_State.nGPR[CMIPS::RA].nD0 = static_cast<int32>(m_returnFromExceptionAddress);
}
}
}
}
void CIopBios::ReturnFromException()
{
uint32& status = m_cpu.m_State.nCOP0[CCOP_SCU::STATUS];
assert(status & (CMIPS::STATUS_ERL | CMIPS::STATUS_EXL));
if(status & CMIPS::STATUS_ERL)
{
status &= ~CMIPS::STATUS_ERL;
}
else if(status & CMIPS::STATUS_EXL)
{
status &= ~CMIPS::STATUS_EXL;
}
Reschedule();
}
void CIopBios::DeleteModules()
{
m_modules.clear();
#ifdef _IOP_EMULATE_MODULES
m_padman.reset();
m_mtapman.reset();
m_mcserv.reset();
m_cdvdfsv.reset();
m_fileIo.reset();
m_hleModules.clear();
#endif
m_sifCmd.reset();
m_sifMan.reset();
m_libsd.reset();
m_stdio.reset();
m_ioman.reset();
m_sysmem.reset();
m_modload.reset();
}
void CIopBios::UnloadUserComponents()
{
//This will attempt to get rid of most things a game might have loaded
//This also adds some constraints that could be annoying, like the inability
//for HLE modules to create threads or semaphores
//This won't get rid of some stuff such as memory allocations
assert(m_currentThreadId == -1);
for(auto thread : m_threads)
{
if(!thread) continue;
TerminateThread(thread->id);
DeleteThread(thread->id);
}
for(auto loadedModuleIterator = std::begin(m_loadedModules);
loadedModuleIterator != std::end(m_loadedModules); loadedModuleIterator++)
{
auto loadedModule = *loadedModuleIterator;
if(!loadedModule) continue;
if(loadedModule->state == MODULE_STATE::STARTED)
{
loadedModule->state = MODULE_STATE::STOPPED;
}
UnloadModule(loadedModuleIterator);
}
std::experimental::erase_if(m_modules, [](const auto& modulePair) { return std::dynamic_pointer_cast<Iop::CDynamic>(modulePair.second); });
m_intrHandlers.FreeAll();
m_semaphores.FreeAll();
m_sifCmd->ClearServers();
}
int32 CIopBios::LoadHleModule(const Iop::ModulePtr& module)
{
auto loadedModuleId = SearchModuleByName(module->GetId().c_str());
if(loadedModuleId >= 0)
{
return loadedModuleId;
}
loadedModuleId = m_loadedModules.Allocate();
assert(loadedModuleId != -1);
if(loadedModuleId == -1) return -1;
auto loadedModule = m_loadedModules[loadedModuleId];
strncpy(loadedModule->name, module->GetId().c_str(), LOADEDMODULE::MAX_NAME_SIZE);
loadedModule->state = MODULE_STATE::HLE;
//Register entries as if the module initialized itself
RegisterHleModule(module);
return loadedModuleId;
}
void CIopBios::RegisterHleModule(const Iop::ModulePtr& module)
{
RegisterModule(module);
if(auto sifModuleProvider = std::dynamic_pointer_cast<Iop::CSifModuleProvider>(module))
{
sifModuleProvider->RegisterSifModules(*m_sifMan);
}
}
CIopBios::ModuleSet CIopBios::GetBuiltInModules() const
{
//This gathers all built-in modules
//We don't have a centralised place for them at the moment
//and we only need this for save/load state
ModuleSet modules;
for(const auto& modulePair : m_modules)
{
//Exclude dynamic modules
if(std::dynamic_pointer_cast<Iop::CDynamic>(modulePair.second))
{
continue;
}
modules.insert(modulePair.second.get());
}
for(const auto& modulePair : m_hleModules)
{
modules.insert(modulePair.second.get());
}
return modules;
}
std::string CIopBios::ReadModuleName(uint32 address)
{
std::string moduleName;
const CMemoryMap::MEMORYMAPELEMENT* memoryMapElem = m_cpu.m_pMemoryMap->GetReadMap(address);
assert(memoryMapElem != NULL);
assert(memoryMapElem->nType == CMemoryMap::MEMORYMAP_TYPE_MEMORY);
uint8* memory = reinterpret_cast<uint8*>(memoryMapElem->pPointer) + (address - memoryMapElem->nStart);
while(1)
{
uint8 character = *(memory++);
if(character == 0) break;
if(character < 0x10) continue;
moduleName += character;
}
return moduleName;
}
bool CIopBios::RegisterModule(const Iop::ModulePtr& module)
{
bool registered = (m_modules.find(module->GetId()) != std::end(m_modules));
if(registered) return false;
m_modules[module->GetId()] = module;
return true;
}
bool CIopBios::ReleaseModule(const std::string& moduleName)
{
auto moduleIterator = m_modules.find(moduleName);
if(moduleIterator == std::end(m_modules)) return false;
m_modules.erase(moduleIterator);
return true;
}
void CIopBios::RegisterHleModuleReplacement(const std::string& path, const Iop::ModulePtr& module)
{
//Not definitive function, needs to support filtering by module name
//Can also screw up some things with saved states
m_hleModules[path] = module;
}
uint32 CIopBios::LoadExecutable(CELF32& elf, ExecutableRange& executableRange, uint32 baseAddress)
{
unsigned int programHeaderIndex = GetElfProgramToLoad(elf);
if(programHeaderIndex == -1)
{
throw std::runtime_error("No program to load.");
}
auto programHeader = elf.GetProgram(programHeaderIndex);
if(baseAddress == ~0U)
{
baseAddress = m_sysmem->AllocateMemory(programHeader->nMemorySize, 0, 0);
}
memcpy(
m_ram + baseAddress,
elf.GetContent() + programHeader->nOffset,
programHeader->nFileSize);
RelocateElf(elf, baseAddress, programHeader->nFileSize);
executableRange.first = baseAddress;
executableRange.second = baseAddress + programHeader->nMemorySize;
return baseAddress + elf.GetHeader().nEntryPoint;
}
unsigned int CIopBios::GetElfProgramToLoad(CELF32& elf)
{
unsigned int program = -1;
const auto& header = elf.GetHeader();
for(unsigned int i = 0; i < header.nProgHeaderCount; i++)
{
auto programHeader = elf.GetProgram(i);
if(programHeader != NULL && programHeader->nType == ELF::PT_LOAD)
{
if(program != -1)
{
throw std::runtime_error("Multiple loadable program headers found.");
}
program = i;
}
}
return program;
}
void CIopBios::RelocateElf(CELF32& elf, uint32 programBaseAddress, uint32 programSize)
{
//The IOP's ELF loader doesn't seem to follow the ELF standard completely
//when it comes to relocations. The relocation function seems to use the
//loaded program's base address for all adjustments. Using information from the
//section headers (either the section's start address or info field) will yield
//an incorrect result in some cases.
//Examples:
//- RWA.IRX module from Burnout 3 and Burnout Revenge
//- Modules from Twinkle Star Sprites (stripped section name string table)
const auto& header = elf.GetHeader();
bool isVersion2 = (header.nType == ET_SCE_IOPRELEXEC2);
auto programData = m_ram + programBaseAddress;
for(unsigned int i = 0; i < header.nSectHeaderCount; i++)
{
const auto* sectionHeader = elf.GetSection(i);
if(sectionHeader != nullptr && sectionHeader->nType == ELF::SHT_REL)
{
int32 lastHi16 = -1;
uint32 instructionHi16 = -1;
unsigned int recordCount = sectionHeader->nSize / 8;
auto relocationRecord = reinterpret_cast<const uint32*>(elf.GetSectionData(i));
uint32 sectionBase = 0;
for(unsigned int record = 0; record < recordCount; record++)
{
//Helper to make sure we don't read/write things out of the module's memory area
uint32 oobInstruction = 0;
const auto& getInstructionRef = [&](int32 offset) -> uint32& {
if((offset < 0) || (offset >= static_cast<int32>(programSize)))
{
CLog::GetInstance().Warn(LOGNAME, "Relocation %d accessing location out of bounds: %d.\r\n", record, offset);
oobInstruction = 0;
return oobInstruction;
}
return *reinterpret_cast<uint32*>(programData + offset);
};
//Some games have negative relocation addresses (Hitman 2: Silent Assassin)
//Doesn't seem to be an issue, but we need offsets to be signed
int32 relocationAddress = relocationRecord[0] - sectionBase;
uint32 relocationType = relocationRecord[1] & 0xFF;
{
uint32& instruction = getInstructionRef(relocationAddress);
switch(relocationType)
{
case ELF::R_MIPS_32:
{
instruction += programBaseAddress;
}
break;
case ELF::R_MIPS_26:
{
uint32 offset = (instruction & 0x03FFFFFF) + (programBaseAddress >> 2);
instruction &= ~0x03FFFFFF;
instruction |= offset;
}
break;
case ELF::R_MIPS_HI16:
if(isVersion2)
{
assert((record + 1) != recordCount);
assert((relocationRecord[3] & 0xFF) == ELF::R_MIPS_LO16);
int32 nextRelocationAddress = relocationRecord[2] - sectionBase;
uint32 nextInstruction = getInstructionRef(nextRelocationAddress);
uint32 offset = static_cast<int16>(nextInstruction) + (instruction << 16);
offset += programBaseAddress;
if(offset & 0x8000) offset += 0x10000;
instruction &= ~0xFFFF;
instruction |= offset >> 16;
}
else
{
assert(lastHi16 == -1);
lastHi16 = relocationAddress;
instructionHi16 = instruction;
}
break;
case ELF::R_MIPS_LO16:
if(isVersion2)
{
uint32 offset = static_cast<int16>(instruction);
offset += programBaseAddress;
instruction &= ~0xFFFF;
instruction |= offset & 0xFFFF;
}
else
{
assert(lastHi16 != -1);
uint32 offset = static_cast<int16>(instruction) + (instructionHi16 << 16);
offset += programBaseAddress;
instruction &= ~0xFFFF;
instruction |= offset & 0xFFFF;
uint32& prevInstruction = getInstructionRef(lastHi16);
prevInstruction &= ~0xFFFF;
if(offset & 0x8000) offset += 0x10000;
prevInstruction |= offset >> 16;
lastHi16 = -1;
}
break;
case R_MIPSSCE_MHI16:
{
assert(isVersion2);
assert((record + 1) != recordCount);
assert((relocationRecord[3] & 0xFF) == R_MIPSSCE_ADDEND);
uint32 offset = relocationRecord[2] + programBaseAddress;
if(offset & 0x8000) offset += 0x10000;
offset >>= 16;
while(1)
{
uint32& prevInstruction = getInstructionRef(relocationAddress);
int32 mhiOffset = static_cast<int16>(prevInstruction);
mhiOffset *= 4;
prevInstruction &= ~0xFFFF;
prevInstruction |= offset;
if(mhiOffset == 0) break;
relocationAddress += mhiOffset;
}
}
break;
default:
//Some games use relocation types that might not be supported by the IOP's ELF loader
//- R_MIPS_GPREL16: Used by Sega Ages 2500 Volume 8: Virtua Racing
CLog::GetInstance().Print(LOGNAME, "Unsupported ELF relocation type encountered (%d).\r\n",
relocationType);
assert(false);
break;
}
}
relocationRecord += 2;
}
}
}
}
int32 CIopBios::TriggerCallback(uint32 address, uint32 arg0, uint32 arg1, uint32 arg2, uint32 arg3)
{
// Call the addres on a callback thread with A0 set to arg0
uint32 callbackThreadId = -1;
//Find a thread we could recycle for a new callback
for(auto thread : m_threads)
{
if(!thread) continue;
if(thread->threadProc != address) continue;
if(thread->status == THREAD_STATUS_DORMANT)
{
callbackThreadId = thread->id;
break;
}
}
//If no threads are available, create a new one
if(callbackThreadId == -1)
{
callbackThreadId = CreateThread(address, DEFAULT_PRIORITY, DEFAULT_STACKSIZE, 0, 0);
}
StartThread(callbackThreadId, 0);
ChangeThreadPriority(callbackThreadId, 1);
auto thread = GetThread(callbackThreadId);
thread->context.gpr[CMIPS::A0] = arg0;
thread->context.gpr[CMIPS::A1] = arg1;
thread->context.gpr[CMIPS::A2] = arg2;
thread->context.gpr[CMIPS::A3] = arg3;
return callbackThreadId;
}
void CIopBios::PopulateSystemIntcHandlers()
{
auto intrHandlerTable = reinterpret_cast<CIopBios::SYSTEM_INTRHANDLER*>(&m_ram[BIOS_SYSTEM_INTRHANDLER_TABLE_BASE]);
// homebrews expect this to be non-zero, to modify and use it as a callback during shadown
// https://github.com/ps2dev/ps2sdk/blob/8b7579979db87ace4b0aa5693a8a560d15224a96/iop/dev9/poweroff/src/poweroff.c#L240
auto cdvdIntrHandler = &intrHandlerTable[Iop::CIntc::LINES::LINE_CDROM];
cdvdIntrHandler->handler = 1;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////
//Debug Stuff
#ifdef DEBUGGER_INCLUDED
#define TAGS_SECTION_IOP_MODULES ("modules")
#define TAGS_SECTION_IOP_MODULES_MODULE ("module")
#define TAGS_SECTION_IOP_MODULES_MODULE_BEGINADDRESS ("beginAddress")
#define TAGS_SECTION_IOP_MODULES_MODULE_ENDADDRESS ("endAddress")
#define TAGS_SECTION_IOP_MODULES_MODULE_NAME ("name")
void CIopBios::LoadDebugTags(Framework::Xml::CNode* root)
{
auto moduleSection = root->Select(TAGS_SECTION_IOP_MODULES);
if(moduleSection == NULL) return;
for(Framework::Xml::CFilteringNodeIterator nodeIterator(moduleSection, TAGS_SECTION_IOP_MODULES_MODULE);
!nodeIterator.IsEnd(); nodeIterator++)
{
auto moduleNode(*nodeIterator);
const char* moduleName = moduleNode->GetAttribute(TAGS_SECTION_IOP_MODULES_MODULE_NAME);
const char* beginAddress = moduleNode->GetAttribute(TAGS_SECTION_IOP_MODULES_MODULE_BEGINADDRESS);
const char* endAddress = moduleNode->GetAttribute(TAGS_SECTION_IOP_MODULES_MODULE_ENDADDRESS);
if(!moduleName || !beginAddress || !endAddress) continue;
if(FindModuleDebugInfo(moduleName) != std::end(m_moduleTags)) continue;
BIOS_DEBUG_MODULE_INFO module;
module.name = moduleName;
module.begin = lexical_cast_hex<std::string>(beginAddress);
module.end = lexical_cast_hex<std::string>(endAddress);
module.param = NULL;
m_moduleTags.push_back(module);
}
}
void CIopBios::SaveDebugTags(Framework::Xml::CNode* root)
{
auto moduleSection = new Framework::Xml::CNode(TAGS_SECTION_IOP_MODULES, true);
for(const auto& module : m_moduleTags)
{
auto moduleNode = new Framework::Xml::CNode(TAGS_SECTION_IOP_MODULES_MODULE, true);
moduleNode->InsertAttribute(TAGS_SECTION_IOP_MODULES_MODULE_BEGINADDRESS, lexical_cast_hex<std::string>(module.begin, 8).c_str());
moduleNode->InsertAttribute(TAGS_SECTION_IOP_MODULES_MODULE_ENDADDRESS, lexical_cast_hex<std::string>(module.end, 8).c_str());
moduleNode->InsertAttribute(TAGS_SECTION_IOP_MODULES_MODULE_NAME, module.name.c_str());
moduleSection->InsertNode(moduleNode);
}
root->InsertNode(moduleSection);
}
BiosDebugModuleInfoArray CIopBios::GetModulesDebugInfo() const
{
return m_moduleTags;
}
enum IOP_BIOS_DEBUG_OBJECT_TYPE
{
IOP_BIOS_DEBUG_OBJECT_TYPE_SIFRPCSERVER = BIOS_DEBUG_OBJECT_TYPE_CUSTOM_START,
};
BiosDebugObjectInfoMap CIopBios::GetBiosObjectsDebugInfo() const
{
static BiosDebugObjectInfoMap objectDebugInfo = [] {
BiosDebugObjectInfoMap result;
{
BIOS_DEBUG_OBJECT_INFO info;
info.name = "Threads";
info.selectionAction = BIOS_DEBUG_OBJECT_ACTION::SHOW_STACK_OR_LOCATION;
info.fields =
{
{"Id", BIOS_DEBUG_OBJECT_FIELD_TYPE::UINT32, BIOS_DEBUG_OBJECT_FIELD_ATTRIBUTE::IDENTIFIER},
{"Priority", BIOS_DEBUG_OBJECT_FIELD_TYPE::UINT32},
{"Location", BIOS_DEBUG_OBJECT_FIELD_TYPE::UINT32, BIOS_DEBUG_OBJECT_FIELD_ATTRIBUTE::LOCATION | BIOS_DEBUG_OBJECT_FIELD_ATTRIBUTE::TEXT_ADDRESS},
{"RA", BIOS_DEBUG_OBJECT_FIELD_TYPE::UINT32, BIOS_DEBUG_OBJECT_FIELD_ATTRIBUTE::RETURN_ADDRESS | BIOS_DEBUG_OBJECT_FIELD_ATTRIBUTE::HIDDEN},
{"SP", BIOS_DEBUG_OBJECT_FIELD_TYPE::UINT32, BIOS_DEBUG_OBJECT_FIELD_ATTRIBUTE::STACK_POINTER | BIOS_DEBUG_OBJECT_FIELD_ATTRIBUTE::HIDDEN},
{"State", BIOS_DEBUG_OBJECT_FIELD_TYPE::STRING},
};
result.emplace(std::make_pair(BIOS_DEBUG_OBJECT_TYPE_THREAD, std::move(info)));
}
{
BIOS_DEBUG_OBJECT_INFO info;
info.name = "SIF RPC Servers";
info.selectionAction = BIOS_DEBUG_OBJECT_ACTION::SHOW_LOCATION;
info.fields =
{
{"Id", BIOS_DEBUG_OBJECT_FIELD_TYPE::UINT32, BIOS_DEBUG_OBJECT_FIELD_ATTRIBUTE::IDENTIFIER | BIOS_DEBUG_OBJECT_FIELD_ATTRIBUTE::DATA_ADDRESS},
{"Handler", BIOS_DEBUG_OBJECT_FIELD_TYPE::UINT32, BIOS_DEBUG_OBJECT_FIELD_ATTRIBUTE::LOCATION | BIOS_DEBUG_OBJECT_FIELD_ATTRIBUTE::TEXT_ADDRESS},
{"Queue Thread Id", BIOS_DEBUG_OBJECT_FIELD_TYPE::UINT32, BIOS_DEBUG_OBJECT_FIELD_ATTRIBUTE::NONE},
};
result.emplace(std::make_pair(IOP_BIOS_DEBUG_OBJECT_TYPE_SIFRPCSERVER, std::move(info)));
}
return result;
}();
return objectDebugInfo;
}
BiosDebugObjectArray CIopBios::GetBiosObjects(uint32 typeId) const
{
BiosDebugObjectArray result;
switch(typeId)
{
case BIOS_DEBUG_OBJECT_TYPE_THREAD:
for(auto it = std::begin(m_threads); it != std::end(m_threads); it++)
{
auto thread = *it;
if(!thread) continue;
uint32 pc = 0;
uint32 ra = 0;
uint32 sp = 0;
if(m_currentThreadId == it)
{
pc = m_cpu.m_State.nPC;
ra = m_cpu.m_State.nGPR[CMIPS::RA].nV0;
sp = m_cpu.m_State.nGPR[CMIPS::SP].nV0;
}
else
{
pc = thread->context.epc;
ra = thread->context.gpr[CMIPS::RA];
sp = thread->context.gpr[CMIPS::SP];
}
std::string stateDescription;
int64 deltaTime = thread->nextActivateTime - GetCurrentTime();
switch(thread->status)
{
case THREAD_STATUS_DORMANT:
stateDescription = "Dormant";
break;
case THREAD_STATUS_RUNNING:
if(deltaTime <= 0)
{
stateDescription = "Running";
}
else
{
stateDescription = string_format("Delayed (%ld ticks)", deltaTime);
}
break;
case THREAD_STATUS_SLEEPING:
stateDescription = "Sleeping";
break;
case THREAD_STATUS_WAITING_SEMAPHORE:
stateDescription = string_format("Waiting (Semaphore: %d)", thread->waitSemaphore);
break;
case THREAD_STATUS_WAITING_EVENTFLAG:
stateDescription = string_format("Waiting (Event Flag: %d)", thread->waitEventFlag);
break;
case THREAD_STATUS_WAITING_MESSAGEBOX:
stateDescription = string_format("Waiting (Message Box: %d)", thread->waitMessageBox);
break;
case THREAD_STATUS_WAIT_VBLANK_START:
stateDescription = "Waiting (Vblank Start)";
break;
case THREAD_STATUS_WAIT_VBLANK_END:
stateDescription = "Waiting (Vblank End)";
break;
default:
stateDescription = "Unknown";
break;
}
BIOS_DEBUG_OBJECT obj;
obj.fields = {
BIOS_DEBUG_OBJECT_FIELD(std::in_place_type<uint32>, it),
BIOS_DEBUG_OBJECT_FIELD(std::in_place_type<uint32>, thread->priority),
BIOS_DEBUG_OBJECT_FIELD(std::in_place_type<uint32>, pc),
BIOS_DEBUG_OBJECT_FIELD(std::in_place_type<uint32>, ra),
BIOS_DEBUG_OBJECT_FIELD(std::in_place_type<uint32>, sp),
BIOS_DEBUG_OBJECT_FIELD(std::in_place_type<std::string>, stateDescription),
};
result.push_back(obj);
}
break;
case IOP_BIOS_DEBUG_OBJECT_TYPE_SIFRPCSERVER:
{
const auto& servers = m_sifCmd->GetServers();
for(const auto& server : servers)
{
uint32 serverDataAddr = server->GetServerDataAddress();
uint32 queueThreadId = -1;
auto serverData = reinterpret_cast<const Iop::CSifCmd::SIFRPCSERVERDATA*>(m_ram + serverDataAddr);
if(serverData->queueAddr != 0)
{
auto queueData = reinterpret_cast<const Iop::CSifCmd::SIFRPCQUEUEDATA*>(m_ram + serverData->queueAddr);
queueThreadId = queueData->threadId;
}
BIOS_DEBUG_OBJECT obj;
obj.fields = {
BIOS_DEBUG_OBJECT_FIELD(std::in_place_type<uint32>, serverData->serverId),
BIOS_DEBUG_OBJECT_FIELD(std::in_place_type<uint32>, serverData->function),
BIOS_DEBUG_OBJECT_FIELD(std::in_place_type<uint32>, queueThreadId),
};
result.push_back(obj);
}
}
break;
}
return result;
}
void CIopBios::PrepareModuleDebugInfo(CELF32& elf, const ExecutableRange& moduleRange, const std::string& moduleName, const std::string& modulePath)
{
//Update module tag
{
auto moduleIterator(FindModuleDebugInfo(moduleRange.first, moduleRange.second));
if(moduleIterator == std::end(m_moduleTags))
{
moduleIterator = FindModuleDebugInfo(moduleName);
if(moduleIterator == std::end(m_moduleTags))
{
moduleIterator = m_moduleTags.insert(std::end(m_moduleTags), BIOS_DEBUG_MODULE_INFO());
}
}
auto& module(*moduleIterator);
module.name = moduleName;
module.begin = moduleRange.first;
module.end = moduleRange.second;
module.param = NULL;
}
m_cpu.m_analysis->Analyse(moduleRange.first, moduleRange.second);
bool functionAdded = false;
//Look for import tables
for(uint32 address = moduleRange.first; address < moduleRange.second; address += 4)
{
if(m_cpu.m_pMemoryMap->GetWord(address) == 0x41E00000)
{
if(m_cpu.m_pMemoryMap->GetWord(address + 4) != 0) continue;
uint32 version = m_cpu.m_pMemoryMap->GetWord(address + 8);
std::string moduleName = ReadModuleName(address + 0xC);
IopModuleMapType::iterator module(m_modules.find(moduleName));
size_t moduleNameLength = moduleName.length();
uint32 entryAddress = address + 0x0C + ((moduleNameLength + 3) & ~0x03);
while(m_cpu.m_pMemoryMap->GetWord(entryAddress) == 0x03E00008)
{
uint32 target = m_cpu.m_pMemoryMap->GetWord(entryAddress + 4);
uint32 functionId = target & 0xFFFF;
std::string functionName;
if(moduleName == m_libsd->GetId())
{
functionName = m_libsd->GetFunctionName(functionId);
}
else if(module != m_modules.end())
{
functionName = (module->second)->GetFunctionName(functionId);
}
else
{
char functionNameTemp[256];
sprintf(functionNameTemp, "unknown_%04X", functionId);
functionName = functionNameTemp;
}
if(m_cpu.m_Functions.Find(address) == NULL)
{
m_cpu.m_Functions.InsertTag(entryAddress, (std::string(moduleName) + "_" + functionName).c_str());
functionAdded = true;
}
entryAddress += 8;
}
}
}
//Look also for symbol tables
{
auto pSymTab = elf.FindSection(".symtab");
if(pSymTab != NULL)
{
const char* pStrTab = reinterpret_cast<const char*>(elf.GetSectionData(pSymTab->nIndex));
if(pStrTab != NULL)
{
auto pSym = reinterpret_cast<const ELF::ELFSYMBOL32*>(elf.FindSectionData(".symtab"));
unsigned int nCount = pSymTab->nSize / sizeof(ELF::ELFSYMBOL32);
for(unsigned int i = 0; i < nCount; i++)
{
if((pSym[i].nInfo & 0x0F) != 0x02) continue;
auto symbolSection = elf.GetSection(pSym[i].nSectionIndex);
if(symbolSection == NULL) continue;
m_cpu.m_Functions.InsertTag(moduleRange.first + symbolSection->nStart + pSym[i].nValue, (char*)pStrTab + pSym[i].nName);
functionAdded = true;
}
}
}
}
if(functionAdded)
{
m_cpu.m_Functions.OnTagListChange();
}
CLog::GetInstance().Print(LOGNAME, "Loaded IOP module '%s' @ 0x%08X.\r\n",
modulePath.c_str(), moduleRange.first);
}
BiosDebugModuleInfoIterator CIopBios::FindModuleDebugInfo(const std::string& name)
{
return std::find_if(std::begin(m_moduleTags), std::end(m_moduleTags),
[=](const BIOS_DEBUG_MODULE_INFO& module) {
return name == module.name;
});
}
BiosDebugModuleInfoIterator CIopBios::FindModuleDebugInfo(uint32 beginAddress, uint32 endAddress)
{
return std::find_if(std::begin(m_moduleTags), std::end(m_moduleTags),
[=](const BIOS_DEBUG_MODULE_INFO& module) {
return (beginAddress == module.begin) && (endAddress == module.end);
});
}
#endif