Play-/Source/GenericMipsExecutor.h
Jean-Philip Desjardins 05a411c960 Cleanup.
2022-08-24 08:36:56 -04:00

330 lines
9.3 KiB
C++

#pragma once
#include <list>
#include "MIPS.h"
#include "BasicBlock.h"
#include "BlockLookupOneWay.h"
#include "BlockLookupTwoWay.h"
FRAMEWORK_MAYBE_UNUSED
static bool RangesOverlap(uint32 x1, uint32 x2, uint32 y1, uint32 y2)
{
assert(x1 <= x2);
assert(y1 <= y2);
return (x1 <= y2) && (y1 <= x2);
}
typedef uint32 (*TranslateFunctionType)(CMIPS*, uint32);
typedef std::shared_ptr<CBasicBlock> BasicBlockPtr;
template <typename BlockLookupType, uint32 instructionSize = 4>
class CGenericMipsExecutor : public CMipsExecutor
{
public:
enum
{
MAX_BLOCK_SIZE = 0x1000,
};
enum
{
RECYCLE_NOLINK_THRESHOLD = 16,
};
CGenericMipsExecutor(CMIPS& context, uint32 maxAddress)
: m_emptyBlock(std::make_shared<CBasicBlock>(context, MIPS_INVALID_PC, MIPS_INVALID_PC))
, m_context(context)
, m_maxAddress(maxAddress)
, m_addressMask(maxAddress - 1)
, m_blockLookup(m_emptyBlock.get(), maxAddress)
{
m_emptyBlock->Compile();
ResetBlockOutLinks(m_emptyBlock.get());
assert(!context.m_emptyBlockHandler);
context.m_emptyBlockHandler =
[&](CMIPS* context) {
uint32 address = m_context.m_State.nPC & m_addressMask;
PartitionFunction(address);
auto block = FindBlockStartingAt(address);
assert(!block->IsEmpty());
block->Execute();
};
}
virtual ~CGenericMipsExecutor() = default;
int Execute(int cycles) override
{
m_context.m_State.cycleQuota = cycles;
#ifdef DEBUGGER_INCLUDED
m_mustBreak = false;
m_initQuota = cycles;
#endif
while(m_context.m_State.nHasException == 0)
{
uint32 address = m_context.m_State.nPC & m_addressMask;
auto block = m_blockLookup.FindBlockAt(address);
block->Execute();
}
m_context.m_State.nHasException &= ~MIPS_EXECUTION_STATUS_QUOTADONE;
#ifdef DEBUGGER_INCLUDED
if(m_context.m_State.nHasException == MIPS_EXCEPTION_BREAKPOINT)
{
m_mustBreak = true;
m_context.m_State.nHasException = MIPS_EXCEPTION_NONE;
}
m_breakpointsDisabledOnce = false;
#endif
return m_context.m_State.cycleQuota;
}
CBasicBlock* FindBlockStartingAt(uint32 address) const
{
return m_blockLookup.FindBlockAt(address);
}
void Reset() override
{
m_blockLookup.Clear();
m_blocks.clear();
m_blockOutLinks.clear();
}
void ClearActiveBlocksInRange(uint32 start, uint32 end, bool executing) override
{
CBasicBlock* currentBlock = nullptr;
if(executing)
{
currentBlock = FindBlockStartingAt(m_context.m_State.nPC);
assert(!currentBlock->IsEmpty());
}
ClearActiveBlocksInRangeInternal(start, end, currentBlock);
}
#ifdef DEBUGGER_INCLUDED
bool MustBreak() const override
{
return m_mustBreak;
}
void DisableBreakpointsOnce() override
{
m_breakpointsDisabledOnce = true;
}
bool FilterBreakpoint() override
{
return ((m_initQuota == m_context.m_State.cycleQuota) && m_breakpointsDisabledOnce);
}
#endif
protected:
typedef std::list<BasicBlockPtr> BlockList;
bool HasBlockAt(uint32 address) const
{
auto block = m_blockLookup.FindBlockAt(address);
return !block->IsEmpty();
}
void CreateBlock(uint32 start, uint32 end)
{
assert(!HasBlockAt(start));
auto block = BlockFactory(m_context, start, end);
ResetBlockOutLinks(block.get());
m_blockLookup.AddBlock(block.get());
m_blocks.push_back(std::move(block));
}
void ResetBlockOutLinks(CBasicBlock* block)
{
for(uint32 i = 0; i < LINK_SLOT_MAX; i++)
{
block->SetOutLink(static_cast<LINK_SLOT>(i), std::end(m_blockOutLinks));
}
}
virtual BasicBlockPtr BlockFactory(CMIPS& context, uint32 start, uint32 end)
{
auto result = std::make_shared<CBasicBlock>(context, start, end);
result->Compile();
return result;
}
void SetupBlockLinks(uint32 startAddress, uint32 endAddress, uint32 branchAddress)
{
auto block = m_blockLookup.FindBlockAt(startAddress);
{
uint32 nextBlockAddress = (endAddress + 4) & m_addressMask;
const auto linkSlot = LINK_SLOT_NEXT;
auto link = m_blockOutLinks.insert(std::make_pair(nextBlockAddress, BLOCK_OUT_LINK{linkSlot, startAddress, false}));
block->SetOutLink(linkSlot, link);
auto nextBlock = m_blockLookup.FindBlockAt(nextBlockAddress);
if(!nextBlock->IsEmpty())
{
block->LinkBlock(linkSlot, nextBlock);
link->second.live = true;
}
}
if(branchAddress != 0)
{
branchAddress &= m_addressMask;
const auto linkSlot = LINK_SLOT_BRANCH;
auto link = m_blockOutLinks.insert(std::make_pair(branchAddress, BLOCK_OUT_LINK{linkSlot, startAddress, false}));
block->SetOutLink(linkSlot, link);
auto branchBlock = m_blockLookup.FindBlockAt(branchAddress);
if(!branchBlock->IsEmpty())
{
block->LinkBlock(linkSlot, branchBlock);
link->second.live = true;
}
}
else
{
block->SetOutLink(LINK_SLOT_BRANCH, std::end(m_blockOutLinks));
}
//Resolve any block links that could be valid now that block has been created
{
auto lowerBound = m_blockOutLinks.lower_bound(startAddress);
auto upperBound = m_blockOutLinks.upper_bound(startAddress);
for(auto blockLinkIterator = lowerBound; blockLinkIterator != upperBound; blockLinkIterator++)
{
auto& blockLink = blockLinkIterator->second;
if(blockLink.live) continue;
auto referringBlock = m_blockLookup.FindBlockAt(blockLink.srcAddress);
if(referringBlock->IsEmpty()) continue;
referringBlock->LinkBlock(blockLink.slot, block);
blockLink.live = true;
}
}
}
virtual void PartitionFunction(uint32 startAddress)
{
uint32 endAddress = startAddress + MAX_BLOCK_SIZE;
uint32 branchAddress = 0;
for(uint32 address = startAddress; address < endAddress; address += 4)
{
uint32 opcode = m_context.m_pMemoryMap->GetInstruction(address);
auto branchType = m_context.m_pArch->IsInstructionBranch(&m_context, address, opcode);
if(branchType == MIPS_BRANCH_NORMAL)
{
branchAddress = m_context.m_pArch->GetInstructionEffectiveAddress(&m_context, address, opcode);
endAddress = address + 4;
//Check if the instruction in the delay slot (at address + 4) is a branch
//If it is, don't include it in this block. This will make the behavior coherent between linked and non-linked blocks.
//Branch instructions don't modify registers, it should be ok not to execute them if they are in a delay slot
{
uint32 endOpcode = m_context.m_pMemoryMap->GetInstruction(endAddress);
auto endBranchType = m_context.m_pArch->IsInstructionBranch(&m_context, endAddress, endOpcode);
if(endBranchType == MIPS_BRANCH_NORMAL)
{
endAddress = address;
}
}
break;
}
else if(branchType == MIPS_BRANCH_NODELAY)
{
endAddress = address;
break;
}
}
assert((endAddress - startAddress) <= MAX_BLOCK_SIZE);
assert(endAddress <= m_maxAddress);
CreateBlock(startAddress, endAddress);
auto block = FindBlockStartingAt(startAddress);
if(block->GetRecycleCount() < RECYCLE_NOLINK_THRESHOLD)
{
SetupBlockLinks(startAddress, endAddress, branchAddress);
}
}
//Unlink and removes block from all of our bookkeeping structures
void OrphanBlock(CBasicBlock* block)
{
auto orphanBlockLinkSlot =
[&](LINK_SLOT linkSlot) {
auto link = block->GetOutLink(linkSlot);
if(link != std::end(m_blockOutLinks))
{
if(link->second.live)
{
block->UnlinkBlock(linkSlot);
}
block->SetOutLink(linkSlot, std::end(m_blockOutLinks));
m_blockOutLinks.erase(link);
}
};
orphanBlockLinkSlot(LINK_SLOT_NEXT);
orphanBlockLinkSlot(LINK_SLOT_BRANCH);
}
void ClearActiveBlocksInRangeInternal(uint32 start, uint32 end, CBasicBlock* protectedBlock)
{
//Widen scan range since blocks starting before the range can end in the range
uint32 scanStart = static_cast<uint32>(std::max<int64>(0, static_cast<uint64>(start) - MAX_BLOCK_SIZE));
uint32 scanEnd = end;
assert(scanEnd > scanStart);
std::set<CBasicBlock*> clearedBlocks;
for(uint32 address = scanStart; address < scanEnd; address += instructionSize)
{
auto block = m_blockLookup.FindBlockAt(address);
if(block->IsEmpty()) continue;
if(block == protectedBlock) continue;
if(!RangesOverlap(block->GetBeginAddress(), block->GetEndAddress(), start, end)) continue;
clearedBlocks.insert(block);
m_blockLookup.DeleteBlock(block);
}
//Remove pending block link entries for the blocks that are about to be cleared
for(auto& block : clearedBlocks)
{
OrphanBlock(block);
}
//Undo all stale links
for(auto& block : clearedBlocks)
{
auto lowerBound = m_blockOutLinks.lower_bound(block->GetBeginAddress());
auto upperBound = m_blockOutLinks.upper_bound(block->GetBeginAddress());
for(auto blockLinkIterator = lowerBound; blockLinkIterator != upperBound; blockLinkIterator++)
{
auto& blockLink = blockLinkIterator->second;
if(!blockLink.live) continue;
auto referringBlock = m_blockLookup.FindBlockAt(blockLink.srcAddress);
if(referringBlock->IsEmpty()) continue;
referringBlock->UnlinkBlock(blockLink.slot);
blockLink.live = false;
}
}
if(!clearedBlocks.empty())
{
m_blocks.remove_if([&](const BasicBlockPtr& block) { return clearedBlocks.find(block.get()) != std::end(clearedBlocks); });
}
}
BlockList m_blocks;
BasicBlockPtr m_emptyBlock;
BlockOutLinkMap m_blockOutLinks;
CMIPS& m_context;
uint32 m_maxAddress = 0;
uint32 m_addressMask = 0;
BlockLookupType m_blockLookup;
#ifdef DEBUGGER_INCLUDED
bool m_mustBreak = false;
bool m_breakpointsDisabledOnce = false;
int m_initQuota = 0;
#endif
};