Play-/Source/ee/FpAddTruncate.cpp
2019-10-29 19:52:29 -04:00

176 lines
4.7 KiB
C++

//Source: The LLVM Compiler Infrastructure - lib/addsf3.c
//Modified to truncate result of addition
#include <limits.h>
#include <cstdint>
#include "FpAddTruncate.h"
#include "BitManip.h"
typedef uint32 rep_t;
typedef int32 srep_t;
typedef float fp_t;
#define REP_C UINT32_C
#define significandBits 23
#define typeWidth (sizeof(rep_t) * CHAR_BIT)
#define exponentBits (typeWidth - significandBits - 1)
#define maxExponent ((1 << exponentBits) - 1)
#define exponentBias (maxExponent >> 1)
#define implicitBit (REP_C(1) << significandBits)
#define significandMask (implicitBit - 1U)
#define signBit (REP_C(1) << (significandBits + exponentBits))
#define absMask (signBit - 1U)
#define exponentMask (absMask ^ significandMask)
#define oneRep ((rep_t)exponentBias << significandBits)
#define infRep exponentMask
#define quietBit (implicitBit >> 1)
#define qnanRep (exponentMask | quietBit)
static inline int rep_clz(rep_t a)
{
return __builtin_clz(a);
}
uint32 FpAddTruncate(uint32 a, uint32 b)
{
const rep_t aAbs = a & absMask;
const rep_t bAbs = b & absMask;
// Detect if a or b is zero, infinity, or NaN.
if(aAbs - 1U >= infRep - 1U || bAbs - 1U >= infRep - 1U)
{
// NaN + anything = qNaN
if(aAbs > infRep) return (a | quietBit);
// anything + NaN = qNaN
if(bAbs > infRep) return (b | quietBit);
if(aAbs == infRep)
{
// +/-infinity + -/+infinity = qNaN
if((a ^ b) == signBit) return qnanRep;
// +/-infinity + anything remaining = +/- infinity
else
return a;
}
// anything remaining + +/-infinity = +/-infinity
if(bAbs == infRep) return b;
// zero + anything = anything
if(!aAbs)
{
// but we need to get the sign right for zero + zero
if(!bAbs)
return (a & b);
else
return b;
}
// anything + zero = anything
if(!bAbs) return a;
}
// Swap a and b if necessary so that a has the larger absolute value.
if(bAbs > aAbs)
{
const uint32 temp = a;
a = b;
b = temp;
}
// Extract the exponent and significand from the (possibly swapped) a and b.
int aExponent = a >> significandBits & maxExponent;
int bExponent = b >> significandBits & maxExponent;
rep_t aSignificand = a & significandMask;
rep_t bSignificand = b & significandMask;
// Normalize any denormals, and adjust the exponent accordingly.
//if (aExponent == 0) aExponent = normalize(&aSignificand);
//if (bExponent == 0) bExponent = normalize(&bSignificand);
// The sign of the result is the sign of the larger operand, a. If they
// have opposite signs, we are performing a subtraction; otherwise addition.
const rep_t resultSign = a & signBit;
const bool subtraction = (a ^ b) & signBit;
// Shift the significands to give us round, guard and sticky, and or in the
// implicit significand bit. (If we fell through from the denormal path it
// was already set by normalize( ), but setting it twice won't hurt
// anything.)
aSignificand = (aSignificand | implicitBit) << 3;
bSignificand = (bSignificand | implicitBit) << 3;
// Shift the significand of b by the difference in exponents, with a sticky
// bottom bit to get rounding correct.
const unsigned int align = aExponent - bExponent;
if(align)
{
if(align < typeWidth)
{
//const bool sticky = bSignificand << (typeWidth - align);
bSignificand = bSignificand >> align;
}
else
{
bSignificand = 0; // sticky; b is known to be non-zero.
}
}
if(subtraction)
{
aSignificand -= bSignificand;
// If a == -b, return +zero.
if(aSignificand == 0) return 0;
// If partial cancellation occured, we need to left-shift the result
// and adjust the exponent:
if(aSignificand < implicitBit << 3)
{
const int shift = rep_clz(aSignificand) - rep_clz(implicitBit << 3);
aSignificand <<= shift;
aExponent -= shift;
}
}
else /* addition */
{
aSignificand += bSignificand;
// If the addition carried up, we need to right-shift the result and
// adjust the exponent:
if(aSignificand & implicitBit << 4)
{
const bool sticky = aSignificand & 1;
aSignificand = aSignificand >> 1 | sticky;
aExponent += 1;
}
}
// If we have overflowed the type, return +/- infinity:
if(aExponent >= maxExponent) return infRep | resultSign;
if(aExponent <= 0)
{
// Result is denormal before rounding; the exponent is zero and we
// need to shift the significand.
const int shift = 1 - aExponent;
const bool sticky = aSignificand << (typeWidth - shift);
aSignificand = aSignificand >> shift | sticky;
aExponent = 0;
}
// Low three bits are round, guard, and sticky.
const int roundGuardSticky = aSignificand & 0x7;
// Shift the significand into place, and mask off the implicit bit.
rep_t result = aSignificand >> 3 & significandMask;
// Insert the exponent and sign.
result |= (rep_t)aExponent << significandBits;
result |= resultSign;
return result;
}