Play-/Source/ee/Vif.h
Jean-Philip Desjardins 340ece9e1d Bring UNPACK logic to what it was.
The PoC was based on old UNPACK code that didn't have some of the more recent fixes.
2021-05-28 13:12:30 -04:00

572 lines
11 KiB
C++

#pragma once
#include <climits>
#include <cstring>
#include "Types.h"
#include "Convertible.h"
#include "Vpu.h"
#include "../uint128.h"
#include "../Profiler.h"
#include "zip/ZipArchiveWriter.h"
#include "zip/ZipArchiveReader.h"
class CINTC;
class CVif
{
public:
enum
{
REGS0_START = 0x10003800,
VIF0_STAT = 0x10003800,
VIF0_FBRST = 0x10003810,
VIF0_ERR = 0x10003820,
VIF0_MARK = 0x10003830,
VIF0_CYCLE = 0x10003840,
VIF0_MODE = 0x10003850,
VIF0_NUM = 0x10003860,
VIF0_MASK = 0x10003870,
VIF0_CODE = 0x10003880,
VIF0_R0 = 0x10003900,
VIF0_R1 = 0x10003910,
VIF0_R2 = 0x10003920,
VIF0_R3 = 0x10003930,
REGS0_END = 0x10003A00,
REGS1_START = 0x10003C00,
VIF1_STAT = 0x10003C00,
VIF1_FBRST = 0x10003C10,
VIF1_ERR = 0x10003C20,
VIF1_MARK = 0x10003C30,
VIF1_CYCLE = 0x10003C40,
VIF1_MODE = 0x10003C50,
VIF1_NUM = 0x10003C60,
VIF1_MASK = 0x10003C70,
VIF1_CODE = 0x10003C80,
VIF1_R0 = 0x10003D00,
VIF1_R1 = 0x10003D10,
VIF1_R2 = 0x10003D20,
VIF1_R3 = 0x10003D30,
REGS1_END = 0x10003E00,
VIF0_FIFO_START = 0x10004000,
VIF0_FIFO_END = 0x10004FFF,
VIF1_FIFO_START = 0x10005000,
VIF1_FIFO_END = 0x10005FFF,
};
CVif(unsigned int, CVpu&, CINTC&, uint8*, uint8*);
virtual ~CVif() = default;
virtual void Reset();
uint32 GetRegister(uint32);
void SetRegister(uint32, uint32);
virtual void SaveState(Framework::CZipArchiveWriter&);
virtual void LoadState(Framework::CZipArchiveReader&);
virtual uint32 GetTOP() const;
virtual uint32 GetITOP() const;
virtual uint32 ReceiveDMA(uint32, uint32, uint32, bool);
bool IsWaitingForProgramEnd() const;
protected:
enum
{
CODE_CMD_MARK = 0x07,
};
enum
{
FBRST_RST = 0x01,
FBRST_FBK = 0x02,
FBRST_STP = 0x04,
FBRST_STC = 0x08
};
enum
{
STAT_FDR = 0x00800000,
};
enum
{
FIFO_SIZE = 0x100
};
class CFifoStream
{
public:
CFifoStream(uint8*, uint8*);
virtual ~CFifoStream() = default;
void Reset();
inline uint32 GetAvailableReadBytes() const
{
return GetRemainingDmaTransferSize() + (BUFFERSIZE - m_bufferPosition);
}
inline uint32 GetRemainingDmaTransferSize() const
{
return m_endAddress - m_nextAddress;
}
inline void Read(void* buffer, uint32 size)
{
assert(m_source != nullptr);
assert(buffer != nullptr);
uint8* readBuffer = reinterpret_cast<uint8*>(buffer);
while(size != 0)
{
SyncBuffer();
uint32 read = std::min<uint32>(size, BUFFERSIZE - m_bufferPosition);
memcpy(readBuffer, reinterpret_cast<uint8*>(&m_buffer) + m_bufferPosition, read);
readBuffer += read;
m_bufferPosition += read;
size -= read;
}
}
void Flush();
inline void Align32();
void SetDmaParams(uint32, uint32, bool);
void SetFifoParams(uint8*, uint32);
uint8* GetDirectPointer() const;
void Advance(uint32);
private:
inline void SyncBuffer()
{
assert(m_bufferPosition <= BUFFERSIZE);
if(m_bufferPosition >= BUFFERSIZE)
{
if(m_nextAddress >= m_endAddress)
{
throw std::exception();
}
m_buffer = *reinterpret_cast<uint128*>(&m_source[m_nextAddress]);
m_nextAddress += 0x10;
m_bufferPosition = 0;
if(m_tagIncluded)
{
//Skip next 8 bytes
m_tagIncluded = false;
m_bufferPosition += 8;
}
}
}
enum
{
BUFFERSIZE = 0x10
};
uint8* m_ram = nullptr;
uint8* m_spr = nullptr;
uint128 m_buffer;
uint32 m_bufferPosition = BUFFERSIZE;
uint32 m_startAddress = 0;
uint32 m_nextAddress = 0;
uint32 m_endAddress = 0;
bool m_tagIncluded = false;
uint8* m_source = nullptr;
};
typedef CFifoStream StreamType;
struct STAT : public convertible<uint32>
{
unsigned int nVPS : 2;
unsigned int nVEW : 1;
unsigned int nReserved0 : 3;
unsigned int nMRK : 1;
unsigned int nDBF : 1;
unsigned int nVSS : 1;
unsigned int nVFS : 1;
unsigned int nVIS : 1;
unsigned int nINT : 1;
unsigned int nER0 : 1;
unsigned int nER1 : 1;
unsigned int nReserved2 : 9;
unsigned int nFDR : 1; //VIF1 only
unsigned int nFQC : 4;
unsigned int nReserved3 : 4;
};
static_assert(sizeof(STAT) == sizeof(uint32), "Size of STAT struct must be 4 bytes.");
struct ERR : public convertible<uint32>
{
unsigned int nMII : 1;
unsigned int nME0 : 1;
unsigned int nME1 : 1;
unsigned int nReserved : 29;
};
static_assert(sizeof(ERR) == sizeof(uint32), "Size of ERR struct must be 4 bytes.");
struct CYCLE : public convertible<uint32>
{
unsigned int nCL : 8;
unsigned int nWL : 8;
unsigned int reserved : 16;
};
static_assert(sizeof(CYCLE) == sizeof(uint32), "Size of CYCLE struct must be 4 bytes.");
struct CODE : public convertible<uint32>
{
unsigned int nIMM : 16;
unsigned int nNUM : 8;
unsigned int nCMD : 7;
unsigned int nI : 1;
};
static_assert(sizeof(CODE) == sizeof(uint32), "Size of CODE struct must be 4 bytes.");
enum ADDMODE
{
MODE_NORMAL = 0,
MODE_OFFSET = 1,
MODE_DIFFERENCE = 2
};
enum MASKOP
{
MASK_DATA = 0,
MASK_ROW = 1,
MASK_COL = 2,
MASK_MASK = 3
};
void ProcessFifoWrite(uint32, uint32);
void ProcessPacket(StreamType&);
virtual void ExecuteCommand(StreamType&, CODE);
virtual void Cmd_UNPACK(StreamType&, CODE, uint32);
void Cmd_MPG(StreamType&, CODE);
void Cmd_STROW(StreamType&, CODE);
void Cmd_STCOL(StreamType&, CODE);
void Cmd_STMASK(StreamType&, CODE);
inline uint32 GetMaskOp(unsigned int, unsigned int) const;
inline bool Unpack_S32(StreamType&, uint128&);
inline bool Unpack_S16(StreamType&, uint128&, bool);
inline bool Unpack_S8(StreamType&, uint128&, bool);
inline bool Unpack_V45(StreamType&, uint128&);
template <unsigned int fields>
inline bool Unpack_V32(StreamType& stream, uint128& result)
{
if(stream.GetAvailableReadBytes() < (fields * 4)) return false;
stream.Read(&result, (fields * 4));
return true;
}
template <unsigned int fields, bool zeroExtend>
inline bool Unpack_V16(StreamType& stream, uint128& result)
{
if(stream.GetAvailableReadBytes() < (fields * 2)) return false;
uint16 values[fields];
stream.Read(values, fields * 2);
for(unsigned int i = 0; i < fields; i++)
{
uint32 temp = values[i];
if(!zeroExtend)
{
temp = static_cast<int16>(temp);
}
result.nV[i] = temp;
}
return true;
}
template <unsigned int fields, bool zeroExtend>
inline bool Unpack_V8(StreamType& stream, uint128& result)
{
if(stream.GetAvailableReadBytes() < (fields)) return false;
uint8 values[fields];
stream.Read(values, fields);
for(unsigned int i = 0; i < fields; i++)
{
uint32 temp = values[i];
if(!zeroExtend)
{
temp = static_cast<int8>(temp);
}
result.nV[i] = temp;
}
return true;
}
template <uint8 dataType, bool usn>
bool Unpack_ReadValue(StreamType& stream, uint128& writeValue)
{
bool success = false;
switch(dataType)
{
case 0x00:
//S-32
success = Unpack_S32(stream, writeValue);
break;
case 0x01:
//S-16
success = Unpack_S16(stream, writeValue, usn);
break;
case 0x02:
//S-8
success = Unpack_S8(stream, writeValue, usn);
break;
case 0x04:
//V2-32
success = Unpack_V32<2>(stream, writeValue);
break;
case 0x05:
//V2-16
success = Unpack_V16<2, usn>(stream, writeValue);
break;
case 0x06:
//V2-8
success = Unpack_V8<2, usn>(stream, writeValue);
break;
case 0x08:
//V3-32
success = Unpack_V32<3>(stream, writeValue);
break;
case 0x09:
//V3-16
success = Unpack_V16<3, usn>(stream, writeValue);
break;
case 0x0A:
//V3-8
success = Unpack_V8<3, usn>(stream, writeValue);
break;
case 0x0C:
//V4-32
success = Unpack_V32<4>(stream, writeValue);
break;
case 0x0D:
//V4-16
success = Unpack_V16<4, usn>(stream, writeValue);
break;
case 0x0E:
//V4-8
success = Unpack_V8<4, usn>(stream, writeValue);
break;
case 0x0F:
//V4-5
success = Unpack_V45(stream, writeValue);
break;
default:
assert(0);
break;
}
return success;
}
template <uint8 dataType, bool clGreaterEqualWl, bool useMask, uint8 mode, bool usn>
void Unpack(StreamType& stream, CODE nCommand, uint32 nDstAddr)
{
assert((nCommand.nCMD & 0x60) == 0x60);
const auto vuMem = m_vpu.GetVuMemory();
const auto vuMemSize = m_vpu.GetVuMemorySize();
uint32 cl = m_CYCLE.nCL;
uint32 wl = m_CYCLE.nWL;
if(wl == 0)
{
wl = UINT_MAX;
cl = 0;
}
if(m_NUM == nCommand.nNUM)
{
m_readTick = 0;
m_writeTick = 0;
}
uint32 currentNum = (m_NUM == 0) ? 256 : m_NUM;
uint32 codeNum = (m_CODE.nNUM == 0) ? 256 : m_CODE.nNUM;
uint32 transfered = codeNum - currentNum;
if(cl > wl)
{
nDstAddr += cl * (transfered / wl) + (transfered % wl);
}
else
{
nDstAddr += transfered;
}
nDstAddr *= 0x10;
assert(nDstAddr < vuMemSize);
nDstAddr &= (vuMemSize - 1);
while(currentNum != 0)
{
bool mustWrite = false;
uint128 writeValue;
memset(&writeValue, 0, sizeof(writeValue));
if(clGreaterEqualWl)
{
if(m_readTick < wl)
{
bool success = Unpack_ReadValue<dataType, usn>(stream, writeValue);
if(!success) break;
mustWrite = true;
}
}
else
{
if(m_writeTick < cl)
{
bool success = Unpack_ReadValue<dataType, usn>(stream, writeValue);
if(!success) break;
}
mustWrite = true;
}
if(mustWrite)
{
auto dst = reinterpret_cast<uint128*>(vuMem + nDstAddr);
for(unsigned int i = 0; i < 4; i++)
{
uint32 maskOp = useMask ? GetMaskOp(i, m_writeTick) : MASK_DATA;
if(maskOp == MASK_DATA)
{
if(mode == MODE_OFFSET)
{
writeValue.nV[i] += m_R[i];
}
else if(mode == MODE_DIFFERENCE)
{
writeValue.nV[i] += m_R[i];
m_R[i] = writeValue.nV[i];
}
dst->nV[i] = writeValue.nV[i];
}
else if(maskOp == MASK_ROW)
{
dst->nV[i] = m_R[i];
}
else if(maskOp == MASK_COL)
{
int index = (m_writeTick > 3) ? 3 : m_writeTick;
dst->nV[i] = m_C[index];
}
else if(maskOp == MASK_MASK)
{
//Don't write anything
}
else
{
assert(0);
}
}
currentNum--;
}
if(clGreaterEqualWl)
{
m_writeTick = std::min<uint32>(m_writeTick + 1, wl);
m_readTick = std::min<uint32>(m_readTick + 1, cl);
if(m_readTick == cl)
{
m_writeTick = 0;
m_readTick = 0;
}
}
else
{
m_writeTick = std::min<uint32>(m_writeTick + 1, wl);
m_readTick = std::min<uint32>(m_readTick + 1, cl);
if(m_writeTick == wl)
{
m_writeTick = 0;
m_readTick = 0;
}
}
nDstAddr += 0x10;
nDstAddr &= (vuMemSize - 1);
}
if(currentNum != 0)
{
m_STAT.nVPS = 1;
}
else
{
stream.Align32();
m_STAT.nVPS = 0;
}
m_NUM = static_cast<uint8>(currentNum);
}
typedef void (CVif::*Unpacker)(StreamType&, CODE, uint32);
enum
{
MAX_UNPACKERS = 0x200
};
virtual void PrepareMicroProgram();
void StartMicroProgram(uint32);
void StartDelayedMicroProgram(uint32);
bool ResumeDelayedMicroProgram();
void DisassembleCommand(CODE);
void DisassembleGet(uint32);
void DisassembleSet(uint32, uint32);
unsigned int m_number = 0;
CVpu& m_vpu;
CINTC& m_intc;
uint8* m_ram = nullptr;
uint8* m_spr = nullptr;
CFifoStream m_stream;
Unpacker m_unpacker[MAX_UNPACKERS];
uint8 m_fifoBuffer[FIFO_SIZE];
uint32 m_fifoIndex = 0;
STAT m_STAT;
ERR m_ERR;
CYCLE m_CYCLE;
CODE m_CODE;
uint8 m_NUM;
uint32 m_MODE;
uint32 m_R[4];
uint32 m_C[4];
uint32 m_MASK;
uint32 m_MARK;
uint32 m_ITOP;
uint32 m_ITOPS;
uint32 m_readTick;
uint32 m_writeTick;
uint32 m_pendingMicroProgram;
uint32 m_incomingFifoDelay;
CProfiler::ZoneHandle m_vifProfilerZone = 0;
};