//Source: The LLVM Compiler Infrastructure - lib/mulsf3.c //Modified to truncate result of multiplication #include #include #include "FpMulTruncate.h" typedef uint32 rep_t; typedef int32 srep_t; typedef float fp_t; #define REP_C UINT32_C #define significandBits 23 #define typeWidth (sizeof(rep_t) * CHAR_BIT) #define exponentBits (typeWidth - significandBits - 1) #define maxExponent ((1 << exponentBits) - 1) #define exponentBias (maxExponent >> 1) #define implicitBit (REP_C(1) << significandBits) #define significandMask (implicitBit - 1U) #define signBit (REP_C(1) << (significandBits + exponentBits)) #define absMask (signBit - 1U) #define exponentMask (absMask ^ significandMask) #define oneRep ((rep_t)exponentBias << significandBits) #define infRep exponentMask #define quietBit (implicitBit >> 1) #define qnanRep (exponentMask | quietBit) static rep_t toRep(fp_t x) { union { fp_t f; rep_t i; } rep; rep.f = x; return rep.i; } static fp_t fromRep(rep_t x) { union { fp_t f; rep_t i; } rep; rep.i = x; return rep.f; } // 32x32 --> 64 bit multiply static void wideMultiply(rep_t a, rep_t b, rep_t* hi, rep_t* lo) { const uint64 product = (uint64)a * b; *hi = product >> 32; *lo = product; } static void wideLeftShift(rep_t* hi, rep_t* lo, int count) { *hi = *hi << count | *lo >> (typeWidth - count); *lo = *lo << count; } static void wideRightShiftWithSticky(rep_t* hi, rep_t* lo, int count) { if(count < typeWidth) { const bool sticky = *lo << (typeWidth - count); *lo = *hi << (typeWidth - count) | *lo >> count | sticky; *hi = *hi >> count; } else if(count < 2 * typeWidth) { const bool sticky = *hi << (2 * typeWidth - count) | *lo; *lo = *hi >> (count - typeWidth) | sticky; *hi = 0; } else { const bool sticky = *hi | *lo; *lo = sticky; *hi = 0; } } uint32 FpMulTruncate(uint32 a, uint32 b) { const unsigned int aExponent = a >> significandBits & maxExponent; const unsigned int bExponent = b >> significandBits & maxExponent; const rep_t productSign = (a ^ b) & signBit; rep_t aSignificand = a & significandMask; rep_t bSignificand = b & significandMask; int scale = 0; // Detect if a or b is zero, denormal, infinity, or NaN. if(aExponent - 1U >= maxExponent - 1U || bExponent - 1U >= maxExponent - 1U) { const rep_t aAbs = a & absMask; const rep_t bAbs = b & absMask; // NaN * anything = qNaN if(aAbs > infRep) return (a | quietBit); // anything * NaN = qNaN if(bAbs > infRep) return (b | quietBit); if(aAbs == infRep) { // infinity * non-zero = +/- infinity if(bAbs) return (aAbs | productSign); // infinity * zero = NaN else return qnanRep; } if(bAbs == infRep) { // non-zero * infinity = +/- infinity if(aAbs) return (bAbs | productSign); // zero * infinity = NaN else return qnanRep; } // zero * anything = +/- zero if(!aAbs) return productSign; // anything * zero = +/- zero if(!bAbs) return productSign; // one or both of a or b is denormal, the other (if applicable) is a // normal number. Renormalize one or both of a and b, and set scale to // include the necessary exponent adjustment. if(aAbs < implicitBit) aSignificand = 0; if(bAbs < implicitBit) bSignificand = 0; } // Or in the implicit significand bit. (If we fell through from the // denormal path it was already set by normalize( ), but setting it twice // won't hurt anything.) aSignificand |= implicitBit; bSignificand |= implicitBit; // Get the significand of a*b. Before multiplying the significands, shift // one of them left to left-align it in the field. Thus, the product will // have (exponentBits + 2) integral digits, all but two of which must be // zero. Normalizing this result is just a conditional left-shift by one // and bumping the exponent accordingly. rep_t productHi, productLo; wideMultiply(aSignificand, bSignificand << exponentBits, &productHi, &productLo); int productExponent = aExponent + bExponent - exponentBias + scale; // Normalize the significand, adjust exponent if needed. if(productHi & implicitBit) { productExponent++; } else { wideLeftShift(&productHi, &productLo, 1); } // If we have overflowed the type, return +/- infinity. if(productExponent >= maxExponent) return infRep | productSign; if(productExponent <= 0) { // Result is denormal before rounding, the exponent is zero and we // need to shift the significand. wideRightShiftWithSticky(&productHi, &productLo, 1 - productExponent); } else { // Result is normal before rounding; insert the exponent. productHi &= significandMask; productHi |= (rep_t)productExponent << significandBits; } // Insert the sign of the result: productHi |= productSign; return productHi; }