Play-/Source/X86Assembler.cpp

781 lines
18 KiB
C++
Raw Normal View History

#include "X86Assembler.h"
using namespace std;
CX86Assembler::CX86Assembler(
const WriteFunctionType& WriteFunction,
const WriteAtFunctionType& WriteAtFunction,
const TellFunctionType& TellFunction
) :
m_WriteFunction(WriteFunction),
m_WriteAtFunction(WriteAtFunction),
m_TellFunction(TellFunction),
m_nextLabelId(1)
{
}
CX86Assembler::~CX86Assembler()
{
}
CX86Assembler::CAddress CX86Assembler::MakeRegisterAddress(REGISTER nRegister)
{
CAddress Address;
if(nRegister > 7)
{
Address.nIsExtendedModRM = true;
nRegister = static_cast<REGISTER>(nRegister & 7);
}
Address.ModRm.nMod = 3;
Address.ModRm.nRM = nRegister;
return Address;
}
CX86Assembler::CAddress CX86Assembler::MakeXmmRegisterAddress(XMMREGISTER registerId)
{
return MakeRegisterAddress(static_cast<REGISTER>(registerId));
}
CX86Assembler::CAddress CX86Assembler::MakeByteRegisterAddress(REGISTER registerId)
{
if(registerId > 3)
{
throw runtime_error("Unsupported byte register index.");
}
return MakeRegisterAddress(registerId);
}
CX86Assembler::CAddress CX86Assembler::MakeIndRegAddress(REGISTER registerId)
{
CAddress Address;
if(registerId == rSP)
{
registerId = static_cast<REGISTER>(4);
Address.sib.scale = 0;
Address.sib.index = 4;
Address.sib.base = 4;
}
else
{
assert(0);
}
Address.ModRm.nMod = 0;
Address.ModRm.nRM = registerId;
return Address;
}
CX86Assembler::CAddress CX86Assembler::MakeIndRegOffAddress(REGISTER nRegister, uint32 nOffset)
{
CAddress Address;
if(nRegister == rSP)
{
nRegister = static_cast<REGISTER>(4);
Address.sib.scale = 0;
Address.sib.index = 4;
Address.sib.base = 4;
}
if(nRegister > 7)
{
Address.nIsExtendedModRM = true;
nRegister = static_cast<REGISTER>(nRegister & 7);
}
if(GetMinimumConstantSize(nOffset) == 1)
{
Address.ModRm.nMod = 1;
Address.nOffset = static_cast<uint8>(nOffset);
}
else
{
Address.ModRm.nMod = 2;
Address.nOffset = nOffset;
}
Address.ModRm.nRM = nRegister;
return Address;
}
CX86Assembler::CAddress CX86Assembler::MakeBaseIndexScaleAddress(REGISTER base, REGISTER index, uint8 scale)
{
CAddress address;
address.ModRm.nRM = 4;
if(base == rBP || base == r13)
{
throw runtime_error("Invalid base.");
}
if(index == rSP)
{
throw runtime_error("Invalid index.");
}
if(base > 7)
{
address.nIsExtendedModRM = true;
base = static_cast<REGISTER>(base & 7);
}
if(index > 7)
{
address.nIsExtendedSib = true;
index = static_cast<REGISTER>(index & 7);
}
address.sib.base = base;
address.sib.index = index;
switch(scale)
{
case 1:
address.sib.scale = 0;
break;
case 2:
address.sib.scale = 1;
break;
case 4:
address.sib.scale = 2;
break;
case 8:
address.sib.scale = 3;
break;
default:
throw runtime_error("Invalid scale.");
break;
}
return address;
}
CX86Assembler::LABEL CX86Assembler::CreateLabel()
{
return m_nextLabelId++;
}
void CX86Assembler::MarkLabel(LABEL label)
{
m_labels[label] = m_TellFunction();
}
void CX86Assembler::ResolveLabelReferences()
{
for(LabelReferenceMapType::iterator labelRef(m_labelReferences.begin());
m_labelReferences.end() != labelRef; labelRef++)
{
LabelMapType::iterator label(m_labels.find(labelRef->first));
if(label == m_labels.end())
{
throw runtime_error("Invalid label.");
}
size_t referencePos = labelRef->second.address;
size_t labelPos = label->second;
unsigned int referenceSize = labelRef->second.offsetSize;
int offset = static_cast<int>(labelPos - referencePos - referenceSize);
if(referenceSize == 1)
{
if(offset > 127 || offset < -128)
{
throw runtime_error("Label reference too small.");
}
m_WriteAtFunction(static_cast<unsigned int>(referencePos), static_cast<uint8>(offset));
}
}
m_labelReferences.clear();
}
void CX86Assembler::AdcEd(REGISTER registerId, const CAddress& address)
{
WriteEvGvOp(0x13, false, address, registerId);
}
void CX86Assembler::AdcId(const CAddress& address, uint32 constant)
{
WriteEvId(0x02, address, constant);
}
void CX86Assembler::AddEd(REGISTER registerId, const CAddress& address)
{
WriteEvGvOp(0x03, false, address, registerId);
}
void CX86Assembler::AddId(const CAddress& Address, uint32 nConstant)
{
WriteEvId(0x00, Address, nConstant);
}
void CX86Assembler::AndEd(REGISTER registerId, const CAddress& address)
{
WriteEvGvOp(0x23, false, address, registerId);
}
void CX86Assembler::AndIb(const CAddress& address, uint8 constant)
{
WriteEvIb(0x04, address, constant);
}
void CX86Assembler::AndId(const CAddress& address, uint32 constant)
{
WriteEvId(0x04, address, constant);
}
void CX86Assembler::BsrEd(REGISTER registerId, const CAddress& address)
{
WriteByte(0x0F);
WriteEvGvOp(0xBD, false, address, registerId);
}
void CX86Assembler::CallEd(const CAddress& address)
{
WriteEvOp(0xFF, 0x02, false, address);
}
void CX86Assembler::CmovsEd(REGISTER registerId, const CAddress& address)
{
WriteByte(0x0F);
WriteEvGvOp(0x48, false, address, registerId);
}
void CX86Assembler::CmovnsEd(REGISTER registerId, const CAddress& address)
{
WriteByte(0x0F);
WriteEvGvOp(0x49, false, address, registerId);
}
void CX86Assembler::CmpEd(REGISTER registerId, const CAddress& address)
{
WriteEvGvOp(0x3B, false, address, registerId);
}
void CX86Assembler::CmpEq(REGISTER nRegister, const CAddress& Address)
{
WriteEvGvOp(0x3B, true, Address, nRegister);
}
void CX86Assembler::CmpIb(const CAddress& address, uint8 constant)
{
WriteEvIb(0x07, address, constant);
}
void CX86Assembler::CmpId(const CAddress& address, uint32 constant)
{
WriteEvId(0x07, address, constant);
}
void CX86Assembler::CmpIq(const CAddress& Address, uint64 nConstant)
{
WriteEvIq(0x07, Address, nConstant);
}
void CX86Assembler::Cdq()
{
WriteByte(0x99);
}
void CX86Assembler::DivEd(const CAddress& address)
{
WriteEvOp(0xF7, 0x06, false, address);
}
void CX86Assembler::IdivEd(const CAddress& address)
{
WriteEvOp(0xF7, 0x07, false, address);
}
void CX86Assembler::ImulEd(const CAddress& address)
{
WriteEvOp(0xF7, 0x05, false, address);
}
void CX86Assembler::JaeJb(LABEL label)
{
WriteByte(0x73);
CreateLabelReference(label, 1);
WriteByte(0x00);
}
void CX86Assembler::JcJb(LABEL label)
{
WriteByte(0x72);
CreateLabelReference(label, 1);
WriteByte(0x00);
}
void CX86Assembler::JeJb(LABEL label)
{
WriteByte(0x74);
CreateLabelReference(label, 1);
WriteByte(0x00);
}
void CX86Assembler::JmpJb(LABEL label)
{
WriteByte(0xEB);
CreateLabelReference(label, 1);
WriteByte(0x00);
}
void CX86Assembler::JneJb(LABEL label)
{
WriteByte(0x75);
CreateLabelReference(label, 1);
WriteByte(0x00);
}
void CX86Assembler::JnoJb(LABEL label)
{
WriteByte(0x71);
CreateLabelReference(label, 1);
WriteByte(0x00);
}
void CX86Assembler::JnsJb(LABEL label)
{
WriteByte(0x79);
CreateLabelReference(label, 1);
WriteByte(0x00);
}
void CX86Assembler::LeaGd(REGISTER registerId, const CAddress& address)
{
WriteEvGvOp(0x8D, false, address, registerId);
}
void CX86Assembler::MovEd(REGISTER nRegister, const CAddress& Address)
{
WriteEvGvOp(0x8B, false, Address, nRegister);
}
void CX86Assembler::MovEq(REGISTER nRegister, const CAddress& Address)
{
WriteEvGvOp(0x8B, true, Address, nRegister);
}
void CX86Assembler::MovGd(const CAddress& Address, REGISTER nRegister)
{
WriteEvGvOp(0x89, false, Address, nRegister);
}
void CX86Assembler::MovId(REGISTER nRegister, uint32 nConstant)
{
CAddress Address(MakeRegisterAddress(nRegister));
WriteRexByte(false, Address);
WriteByte(0xB8 | Address.ModRm.nRM);
WriteDWord(nConstant);
}
void CX86Assembler::MovsxEb(REGISTER registerId, const CAddress& address)
{
WriteByte(0x0F);
WriteEvGvOp(0xBE, false, address, registerId);
}
void CX86Assembler::MovsxEw(REGISTER registerId, const CAddress& address)
{
WriteByte(0x0F);
WriteEvGvOp(0xBF, false, address, registerId);
}
void CX86Assembler::MovzxEb(REGISTER registerId, const CAddress& address)
{
WriteByte(0x0F);
WriteEvGvOp(0xB6, false, address, registerId);
}
void CX86Assembler::MulEd(const CAddress& address)
{
WriteEvOp(0xF7, 0x04, false, address);
}
void CX86Assembler::NegEd(const CAddress& address)
{
WriteEvOp(0xF7, 0x03, false, address);
}
void CX86Assembler::Nop()
{
WriteByte(0x90);
}
void CX86Assembler::NotEd(const CAddress& address)
{
WriteEvOp(0xF7, 0x02, false, address);
}
void CX86Assembler::OrEd(REGISTER registerId, const CAddress& address)
{
WriteEvGvOp(0x0B, false, address, registerId);
}
void CX86Assembler::OrId(const CAddress& address, uint32 constant)
{
WriteEvId(0x01, address, constant);
}
void CX86Assembler::Pop(REGISTER registerId)
{
CAddress Address(MakeRegisterAddress(registerId));
WriteRexByte(false, Address);
WriteByte(0x58 | Address.ModRm.nRM);
}
void CX86Assembler::Push(REGISTER registerId)
{
CAddress Address(MakeRegisterAddress(registerId));
WriteRexByte(false, Address);
WriteByte(0x50 | Address.ModRm.nRM);
}
void CX86Assembler::PushEd(const CAddress& address)
{
WriteEvOp(0xFF, 0x06, false, address);
}
void CX86Assembler::PushId(uint32 value)
{
WriteByte(0x68);
WriteDWord(value);
}
void CX86Assembler::RepMovsb()
{
WriteByte(0xF3);
WriteByte(0xA4);
}
void CX86Assembler::Ret()
{
WriteByte(0xC3);
}
void CX86Assembler::SarEd(const CAddress& address)
{
WriteEvOp(0xD3, 0x07, false, address);
}
void CX86Assembler::SarEd(const CAddress& address, uint8 amount)
{
WriteEvOp(0xC1, 0x07, false, address);
WriteByte(amount);
}
void CX86Assembler::SbbEd(REGISTER registerId, const CAddress& address)
{
WriteEvGvOp(0x1B, false, address, registerId);
}
void CX86Assembler::SbbId(const CAddress& Address, uint32 nConstant)
{
WriteEvId(0x03, Address, nConstant);
}
void CX86Assembler::SetbEb(const CAddress& address)
{
WriteByte(0x0F);
WriteEvOp(0x92, 0x00, false, address);
}
void CX86Assembler::SetbeEb(const CAddress& address)
{
WriteByte(0x0F);
WriteEvOp(0x96, 0x00, false, address);
}
void CX86Assembler::SeteEb(const CAddress& address)
{
WriteByte(0x0F);
WriteEvOp(0x94, 0x00, false, address);
}
void CX86Assembler::SetneEb(const CAddress& address)
{
WriteByte(0x0F);
WriteEvOp(0x95, 0x00, false, address);
}
void CX86Assembler::SetlEb(const CAddress& address)
{
WriteByte(0x0F);
WriteEvOp(0x9C, 0x00, false, address);
}
void CX86Assembler::SetgEb(const CAddress& address)
{
WriteByte(0x0F);
WriteEvOp(0x9F, 0x00, false, address);
}
void CX86Assembler::ShlEd(const CAddress& address)
{
WriteEvOp(0xD3, 0x04, false, address);
}
void CX86Assembler::ShlEd(const CAddress& address, uint8 amount)
{
WriteEvOp(0xC1, 0x04, false, address);
WriteByte(amount);
}
void CX86Assembler::ShrEd(const CAddress& address)
{
WriteEvOp(0xD3, 0x05, false, address);
}
void CX86Assembler::ShrEd(const CAddress& address, uint8 amount)
{
WriteEvOp(0xC1, 0x05, false, address);
WriteByte(amount);
}
void CX86Assembler::ShldEd(const CAddress& address, REGISTER registerId)
{
WriteByte(0x0F);
WriteEvGvOp(0xA5, false, address, registerId);
}
void CX86Assembler::ShldEd(const CAddress& address, REGISTER registerId, uint8 amount)
{
WriteByte(0x0F);
WriteEvGvOp(0xA4, false, address, registerId);
WriteByte(amount);
}
void CX86Assembler::ShrdEd(const CAddress& address, REGISTER registerId)
{
WriteByte(0x0F);
WriteEvGvOp(0xAD, false, address, registerId);
}
void CX86Assembler::ShrdEd(const CAddress& address, REGISTER registerId, uint8 amount)
{
WriteByte(0x0F);
WriteEvGvOp(0xAC, false, address, registerId);
WriteByte(amount);
}
void CX86Assembler::SubEd(REGISTER nRegister, const CAddress& Address)
{
WriteEvGvOp(0x2B, false, Address, nRegister);
}
void CX86Assembler::SubId(const CAddress& Address, uint32 nConstant)
{
WriteEvId(0x05, Address, nConstant);
}
void CX86Assembler::TestEb(REGISTER registerId, const CAddress& address)
{
if(registerId > 3)
{
throw runtime_error("Unsupported byte register index.");
}
WriteEvGvOp(0x84, false, address, registerId);
}
void CX86Assembler::TestEd(REGISTER registerId, const CAddress& address)
{
WriteEvGvOp(0x85, false, address, registerId);
}
void CX86Assembler::XorEd(REGISTER registerId, const CAddress& address)
{
WriteEvGvOp(0x33, false, address, registerId);
}
void CX86Assembler::XorId(const CAddress& address, uint32 constant)
{
WriteEvId(0x06, address, constant);
}
void CX86Assembler::XorGd(const CAddress& Address, REGISTER nRegister)
{
WriteEvGvOp(0x31, false, Address, nRegister);
}
void CX86Assembler::XorGq(const CAddress& Address, REGISTER nRegister)
{
WriteEvGvOp(0x31, true, Address, nRegister);
}
void CX86Assembler::WriteRexByte(bool nIs64, const CAddress& Address)
{
REGISTER nTemp = rAX;
WriteRexByte(nIs64, Address, nTemp);
}
void CX86Assembler::WriteRexByte(bool nIs64, const CAddress& Address, REGISTER& nRegister)
{
if((nIs64) || (Address.nIsExtendedModRM) || (nRegister > 7))
{
uint8 nByte = 0x40;
nByte |= nIs64 ? 0x8 : 0x0;
nByte |= (nRegister > 7) ? 0x04 : 0x0;
nByte |= Address.nIsExtendedModRM ? 0x1 : 0x0;
nRegister = static_cast<REGISTER>(nRegister & 7);
WriteByte(nByte);
}
}
void CX86Assembler::WriteEvOp(uint8 opcode, uint8 subOpcode, bool is64, const CAddress& address)
{
WriteRexByte(is64, address);
CAddress newAddress(address);
newAddress.ModRm.nFnReg = subOpcode;
WriteByte(opcode);
newAddress.Write(m_WriteFunction);
}
void CX86Assembler::WriteEvGvOp(uint8 nOp, bool nIs64, const CAddress& Address, REGISTER nRegister)
{
WriteRexByte(nIs64, Address, nRegister);
CAddress NewAddress(Address);
NewAddress.ModRm.nFnReg = nRegister;
WriteByte(nOp);
NewAddress.Write(m_WriteFunction);
}
void CX86Assembler::WriteEvIb(uint8 op, const CAddress& address, uint8 constant)
{
WriteRexByte(false, address);
CAddress newAddress(address);
newAddress.ModRm.nFnReg = op;
WriteByte(0x80);
newAddress.Write(m_WriteFunction);
WriteByte(constant);
}
void CX86Assembler::WriteEvId(uint8 nOp, const CAddress& Address, uint32 nConstant)
{
//0x81 -> Id
//0x83 -> Ib
WriteRexByte(false, Address);
CAddress NewAddress(Address);
NewAddress.ModRm.nFnReg = nOp;
if(GetMinimumConstantSize(nConstant) == 1)
{
WriteByte(0x83);
NewAddress.Write(m_WriteFunction);
WriteByte(static_cast<uint8>(nConstant));
}
else
{
WriteByte(0x81);
NewAddress.Write(m_WriteFunction);
WriteDWord(nConstant);
}
}
void CX86Assembler::WriteEvIq(uint8 nOp, const CAddress& Address, uint64 nConstant)
{
unsigned int nConstantSize(GetMinimumConstantSize64(nConstant));
assert(nConstantSize <= 4);
WriteRexByte(true, Address);
CAddress NewAddress(Address);
NewAddress.ModRm.nFnReg = nOp;
if(nConstantSize == 1)
{
WriteByte(0x83);
NewAddress.Write(m_WriteFunction);
WriteByte(static_cast<uint8>(nConstant));
}
else
{
WriteByte(0x81);
NewAddress.Write(m_WriteFunction);
WriteDWord(static_cast<uint32>(nConstant));
}
}
void CX86Assembler::CreateLabelReference(LABEL label, unsigned int size)
{
LABELREF reference;
reference.address = m_TellFunction();
reference.offsetSize = size;
m_labelReferences.insert(LabelReferenceMapType::value_type(label, reference));
}
unsigned int CX86Assembler::GetMinimumConstantSize(uint32 nConstant)
{
if((static_cast<int32>(nConstant) >= -128) && (static_cast<int32>(nConstant) <= 127))
{
return 1;
}
return 4;
}
unsigned int CX86Assembler::GetMinimumConstantSize64(uint64 nConstant)
{
if((static_cast<int64>(nConstant) >= -128) && (static_cast<int64>(nConstant) <= 127))
{
return 1;
}
if((static_cast<int64>(nConstant) >= -2147483647) && (static_cast<int64>(nConstant) <= 2147483647))
{
return 4;
}
return 8;
}
void CX86Assembler::WriteByte(uint8 nByte)
{
m_WriteFunction(nByte);
}
void CX86Assembler::WriteDWord(uint32 nDWord)
{
uint8* pByte(reinterpret_cast<uint8*>(&nDWord));
m_WriteFunction(pByte[0]);
m_WriteFunction(pByte[1]);
m_WriteFunction(pByte[2]);
m_WriteFunction(pByte[3]);
}
/////////////////////////////////////////////////
/////////////////////////////////////////////////
CX86Assembler::CAddress::CAddress()
{
ModRm.nByte = 0;
sib.byteValue = 0;
nIsExtendedModRM = false;
}
void CX86Assembler::CAddress::Write(const WriteFunctionType& WriteFunction)
{
WriteFunction(ModRm.nByte);
if(HasSib())
{
WriteFunction(sib.byteValue);
}
if(ModRm.nMod == 1)
{
WriteFunction(static_cast<uint8>(nOffset));
}
else if(ModRm.nMod == 2)
{
uint8* pByte(reinterpret_cast<uint8*>(&nOffset));
WriteFunction(pByte[0]);
WriteFunction(pByte[1]);
WriteFunction(pByte[2]);
WriteFunction(pByte[3]);
}
}
bool CX86Assembler::CAddress::HasSib() const
{
if(ModRm.nMod == 3) return false;
return ModRm.nRM == 4;
}