Play-/Source/Ee_SubSystem.cpp

627 lines
18 KiB
C++
Raw Normal View History

#include "Ee_SubSystem.h"
#include "Ps2Const.h"
#include "Log.h"
#include "placeholder_def.h"
#include "MemoryStateFile.h"
using namespace Ee;
#define LOG_NAME ("ee_subsystem")
#define STATE_EE ("ee")
#define STATE_VU0 ("vu0")
#define STATE_VU1 ("vu1")
#define STATE_RAM ("ram")
#define STATE_SPR ("spr")
#define STATE_VUMEM0 ("vumem0")
#define STATE_MICROMEM0 ("micromem0")
#define STATE_VUMEM1 ("vumem1")
#define STATE_MICROMEM1 ("micromem1")
#define FAKE_IOP_RAM_SIZE (0x1000)
//TODO: We need to make something a bit cleaner for this
//-------------------------------------------------
static void* Aligned16Alloc(size_t allocSize)
{
#if defined(_MSC_VER)
return _aligned_malloc(allocSize, 16);
#else
return malloc(allocSize);
#endif
}
static void Aligned16Free(void* ptr)
{
#if defined(_MSC_VER)
_aligned_free(ptr);
#else
free(ptr);
#endif
}
//-------------------------------------------------
CSubSystem::CSubSystem(uint8* iopRam, CIopBios& iopBios)
: m_ram(new uint8[PS2::EE_RAM_SIZE])
, m_bios(new uint8[PS2::EE_BIOS_SIZE])
, m_spr(new uint8[PS2::EE_SPR_SIZE])
, m_fakeIopRam(new uint8[FAKE_IOP_RAM_SIZE])
, m_vuMem0(reinterpret_cast<uint8*>(Aligned16Alloc(PS2::VUMEM0SIZE)))
, m_microMem0(new uint8[PS2::MICROMEM0SIZE])
, m_vuMem1(reinterpret_cast<uint8*>(Aligned16Alloc(PS2::VUMEM1SIZE)))
, m_microMem1(new uint8[PS2::MICROMEM1SIZE])
, m_EE(MEMORYMAP_ENDIAN_LSBF)
, m_VU0(MEMORYMAP_ENDIAN_LSBF)
, m_VU1(MEMORYMAP_ENDIAN_LSBF)
, m_executor(m_EE, 0x20000000)
, m_dmac(m_ram, m_spr, m_vuMem0, m_EE)
, m_gif(m_gs, m_ram, m_spr)
, m_sif(m_dmac, m_ram, iopRam)
, m_vif(m_gif, m_ram, m_spr, CVIF::VPUINIT(m_microMem0, m_vuMem0, &m_VU0), CVIF::VPUINIT(m_microMem1, m_vuMem1, &m_VU1))
, m_intc(m_dmac, m_gs)
, m_timer(m_intc)
, m_COP_SCU(MIPS_REGSIZE_64)
, m_COP_FPU(MIPS_REGSIZE_64)
, m_COP_VU(MIPS_REGSIZE_64)
{
//Some alignment checks, this is needed because of SIMD instructions used in generated code
//TODO: Make this work properly on Android
#ifndef __ANDROID__
assert((reinterpret_cast<size_t>(&m_EE.m_State) & 0x0F) == 0);
assert((reinterpret_cast<size_t>(&m_VU0.m_State) & 0x0F) == 0);
assert((reinterpret_cast<size_t>(&m_VU1.m_State) & 0x0F) == 0);
assert((reinterpret_cast<size_t>(m_vuMem0) & 0x0F) == 0);
assert((reinterpret_cast<size_t>(m_vuMem1) & 0x0F) == 0);
#endif
//EmotionEngine context setup
{
//Read map
m_EE.m_pMemoryMap->InsertReadMap(0x00000000, 0x01FFFFFF, m_ram, 0x00);
m_EE.m_pMemoryMap->InsertReadMap(0x02000000, 0x02003FFF, m_spr, 0x01);
m_EE.m_pMemoryMap->InsertReadMap(0x10000000, 0x10FFFFFF, bind(&CSubSystem::IOPortReadHandler, this, PLACEHOLDER_1), 0x02);
m_EE.m_pMemoryMap->InsertReadMap(0x12000000, 0x12FFFFFF, bind(&CSubSystem::IOPortReadHandler, this, PLACEHOLDER_1), 0x03);
m_EE.m_pMemoryMap->InsertReadMap(0x1C000000, 0x1C001000, m_fakeIopRam, 0x04);
m_EE.m_pMemoryMap->InsertReadMap(0x1FC00000, 0x1FFFFFFF, m_bios, 0x05);
//Write map
m_EE.m_pMemoryMap->InsertWriteMap(0x00000000, 0x01FFFFFF, m_ram, 0x00);
m_EE.m_pMemoryMap->InsertWriteMap(0x02000000, 0x02003FFF, m_spr, 0x01);
m_EE.m_pMemoryMap->InsertWriteMap(0x10000000, 0x10FFFFFF, bind(&CSubSystem::IOPortWriteHandler, this, PLACEHOLDER_1, PLACEHOLDER_2), 0x02);
m_EE.m_pMemoryMap->InsertWriteMap(PS2::MICROMEM0ADDR, PS2::MICROMEM0ADDR + PS2::MICROMEM0SIZE, m_microMem0, 0x03);
m_EE.m_pMemoryMap->InsertWriteMap(PS2::VUMEM0ADDR, PS2::VUMEM0ADDR + PS2::VUMEM0SIZE, m_vuMem0, 0x04);
m_EE.m_pMemoryMap->InsertWriteMap(PS2::VUMEM1ADDR, PS2::VUMEM1ADDR + PS2::VUMEM1SIZE, m_vuMem1, 0x05);
m_EE.m_pMemoryMap->InsertWriteMap(0x12000000, 0x12FFFFFF, bind(&CSubSystem::IOPortWriteHandler, this, PLACEHOLDER_1, PLACEHOLDER_2),0x06);
m_EE.m_pMemoryMap->SetWriteNotifyHandler(bind(&CSubSystem::EEMemWriteHandler, this, PLACEHOLDER_1));
//Instruction map
m_EE.m_pMemoryMap->InsertInstructionMap(0x00000000, 0x01FFFFFF, m_ram, 0x00);
m_EE.m_pMemoryMap->InsertInstructionMap(0x1FC00000, 0x1FFFFFFF, m_bios, 0x01);
m_EE.m_pArch = &m_EEArch;
m_EE.m_pCOP[0] = &m_COP_SCU;
m_EE.m_pCOP[1] = &m_COP_FPU;
m_EE.m_pCOP[2] = &m_COP_VU;
m_EE.m_pAddrTranslator = CPS2OS::TranslateAddress;
}
//Vector Unit 0 context setup
{
m_VU0.m_pMemoryMap->InsertReadMap(0x00000000, 0x00000FFF, m_vuMem0, 0x01);
m_VU0.m_pMemoryMap->InsertReadMap(0x00001000, 0x00001FFF, m_vuMem0, 0x02);
m_VU0.m_pMemoryMap->InsertReadMap(0x00002000, 0x00002FFF, m_vuMem0, 0x03);
m_VU0.m_pMemoryMap->InsertReadMap(0x00003000, 0x00003FFF, m_vuMem0, 0x04);
m_VU0.m_pMemoryMap->InsertReadMap(0x00004000, 0x00008FFF, bind(&CSubSystem::Vu0IoPortReadHandler, this, PLACEHOLDER_1), 0x05);
m_VU0.m_pMemoryMap->InsertWriteMap(0x00000000, 0x00000FFF, m_vuMem0, 0x01);
m_VU0.m_pMemoryMap->InsertWriteMap(0x00001000, 0x00001FFF, m_vuMem0, 0x02);
m_VU0.m_pMemoryMap->InsertWriteMap(0x00002000, 0x00002FFF, m_vuMem0, 0x03);
m_VU0.m_pMemoryMap->InsertWriteMap(0x00003000, 0x00003FFF, m_vuMem0, 0x04);
m_VU0.m_pMemoryMap->InsertWriteMap(0x00004000, 0x00008FFF, bind(&CSubSystem::Vu0IoPortWriteHandler, this, PLACEHOLDER_1, PLACEHOLDER_2), 0x05);
m_VU0.m_pMemoryMap->InsertInstructionMap(0x00000000, 0x00000FFF, m_microMem0, 0x00);
m_VU0.m_pArch = &m_MAVU0;
m_VU0.m_pAddrTranslator = CMIPS::TranslateAddress64;
}
//Vector Unit 1 context setup
{
m_VU1.m_pMemoryMap->InsertReadMap(0x00000000, 0x00003FFF, m_vuMem1, 0x00);
m_VU1.m_pMemoryMap->InsertReadMap(0x00008000, 0x00008FFF, bind(&CSubSystem::Vu1IoPortReadHandler, this, PLACEHOLDER_1), 0x01);
m_VU1.m_pMemoryMap->InsertWriteMap(0x00000000, 0x00003FFF, m_vuMem1, 0x00);
m_VU1.m_pMemoryMap->InsertWriteMap(0x00008000, 0x00008FFF, bind(&CSubSystem::Vu1IoPortWriteHandler, this, PLACEHOLDER_1, PLACEHOLDER_2), 0x01);
m_VU1.m_pMemoryMap->InsertInstructionMap(0x00000000, 0x00003FFF, m_microMem1, 0x01);
m_VU1.m_pArch = &m_MAVU1;
m_VU1.m_pAddrTranslator = CMIPS::TranslateAddress64;
}
m_EE.m_vuMem = m_vuMem0;
m_VU0.m_vuMem = m_vuMem0;
m_VU1.m_vuMem = m_vuMem1;
m_dmac.SetChannelTransferFunction(0, bind(&CVIF::ReceiveDMA0, &m_vif, PLACEHOLDER_1, PLACEHOLDER_2, PLACEHOLDER_4));
m_dmac.SetChannelTransferFunction(1, bind(&CVIF::ReceiveDMA1, &m_vif, PLACEHOLDER_1, PLACEHOLDER_2, PLACEHOLDER_4));
m_dmac.SetChannelTransferFunction(2, bind(&CGIF::ReceiveDMA, &m_gif, PLACEHOLDER_1, PLACEHOLDER_2, PLACEHOLDER_3, PLACEHOLDER_4));
m_dmac.SetChannelTransferFunction(4, bind(&CIPU::ReceiveDMA4, &m_ipu, PLACEHOLDER_1, PLACEHOLDER_2, PLACEHOLDER_4, m_ram));
m_dmac.SetChannelTransferFunction(5, bind(&CSIF::ReceiveDMA5, &m_sif, PLACEHOLDER_1, PLACEHOLDER_2, PLACEHOLDER_3, PLACEHOLDER_4));
m_dmac.SetChannelTransferFunction(6, bind(&CSIF::ReceiveDMA6, &m_sif, PLACEHOLDER_1, PLACEHOLDER_2, PLACEHOLDER_3, PLACEHOLDER_4));
m_ipu.SetDMA3ReceiveHandler(bind(&CDMAC::ResumeDMA3, &m_dmac, PLACEHOLDER_1, PLACEHOLDER_2));
m_os = new CPS2OS(m_EE, m_ram, m_bios, m_spr, m_gs, m_sif, iopBios);
m_os->OnRequestInstructionCacheFlush.connect(boost::bind(&CSubSystem::FlushInstructionCache, this));
}
CSubSystem::~CSubSystem()
{
delete [] m_ram;
delete [] m_bios;
delete [] m_fakeIopRam;
Aligned16Free(m_vuMem0);
Aligned16Free(m_vuMem1);
delete m_os;
}
void CSubSystem::Reset()
{
m_os->Release();
m_executor.Reset();
memset(m_ram, 0, PS2::EE_RAM_SIZE);
memset(m_spr, 0, PS2::EE_SPR_SIZE);
memset(m_bios, 0, PS2::EE_BIOS_SIZE);
memset(m_fakeIopRam, 0, FAKE_IOP_RAM_SIZE);
memset(m_vuMem0, 0, PS2::VUMEM0SIZE);
memset(m_microMem0, 0, PS2::MICROMEM0SIZE);
memset(m_vuMem1, 0, PS2::VUMEM1SIZE);
memset(m_microMem1, 0, PS2::MICROMEM1SIZE);
//Reset Contexts
m_EE.Reset();
m_VU0.Reset();
m_VU1.Reset();
m_EE.m_Comments.RemoveTags();
m_EE.m_Functions.RemoveTags();
m_VU0.m_Comments.RemoveTags();
m_VU0.m_Functions.RemoveTags();
m_VU1.m_Comments.RemoveTags();
m_VU1.m_Functions.RemoveTags();
//Reset subunits
m_sif.Reset();
m_ipu.Reset();
m_gif.Reset();
m_vif.Reset();
m_dmac.Reset();
m_intc.Reset();
m_timer.Reset();
m_os->Initialize();
FillFakeIopRam();
}
int CSubSystem::ExecuteCpu(int quota)
{
int executed = 0;
if(m_EE.m_State.callMsEnabled)
{
if(!m_vif.IsVu0Running())
{
//callMs mode over
memcpy(&m_EE.m_State.nCOP2, &m_VU0.m_State.nCOP2, sizeof(m_EE.m_State.nCOP2));
memcpy(&m_EE.m_State.nCOP2A, &m_VU0.m_State.nCOP2A, sizeof(m_EE.m_State.nCOP2A));
memcpy(&m_EE.m_State.nCOP2VI, &m_VU0.m_State.nCOP2VI, sizeof(m_EE.m_State.nCOP2VI));
m_EE.m_State.callMsEnabled = 0;
}
}
else if(!m_EE.m_State.nHasException)
{
executed = (quota - m_executor.Execute(quota));
}
if(m_EE.m_State.nHasException)
{
switch(m_EE.m_State.nHasException)
{
case MIPS_EXCEPTION_SYSCALL:
m_os->HandleSyscall();
break;
case MIPS_EXCEPTION_CALLMS:
assert(m_EE.m_State.callMsEnabled);
if(m_EE.m_State.callMsEnabled)
{
//We are in callMs mode
assert(!m_vif.IsVu0Running());
//Copy the COP2 state to VPU0
memcpy(&m_VU0.m_State.nCOP2, &m_EE.m_State.nCOP2, sizeof(m_VU0.m_State.nCOP2));
memcpy(&m_VU0.m_State.nCOP2A, &m_EE.m_State.nCOP2A, sizeof(m_VU0.m_State.nCOP2A));
memcpy(&m_VU0.m_State.nCOP2VI, &m_EE.m_State.nCOP2VI, sizeof(m_VU0.m_State.nCOP2VI));
m_vif.StartVu0MicroProgram(m_EE.m_State.callMsAddr);
m_EE.m_State.nHasException = MIPS_EXCEPTION_NONE;
}
break;
case MIPS_EXCEPTION_CHECKPENDINGINT:
{
m_EE.m_State.nHasException = MIPS_EXCEPTION_NONE;
CheckPendingInterrupts();
}
break;
case MIPS_EXCEPTION_RETURNFROMEXCEPTION:
{
m_EE.m_State.nHasException = MIPS_EXCEPTION_NONE;
m_os->HandleReturnFromException();
CheckPendingInterrupts();
}
break;
default:
assert(0);
break;
}
assert(!m_EE.m_State.nHasException);
}
return executed;
}
bool CSubSystem::IsCpuIdle() const
{
CBasicBlock* nextBlock = m_executor.FindBlockAt(m_EE.m_State.nPC);
if(nextBlock && nextBlock->GetSelfLoopCount() > 5000)
{
return true;
}
else if(m_os->IsIdle())
{
return true;
}
else if(m_EE.m_State.nPC >= 0x1FC03100 && m_EE.m_State.nPC <= 0x1FC03110)
{
return true;
}
return false;
}
void CSubSystem::CountTicks(int ticks)
{
if(!m_vif.IsVu0Running() || (m_vif.IsVu0Running() && !m_vif.IsVu0WaitingForProgramEnd()))
{
m_dmac.ResumeDMA0();
}
if(!m_vif.IsVu1Running() || (m_vif.IsVu1Running() && !m_vif.IsVu1WaitingForProgramEnd()))
{
m_dmac.ResumeDMA1();
}
m_dmac.ResumeDMA8();
ExecuteIpu();
if(!m_EE.m_State.nHasException)
{
if((m_EE.m_State.nCOP0[CCOP_SCU::STATUS] & CMIPS::STATUS_EXL) == 0)
{
m_sif.ProcessPackets();
}
}
CheckPendingInterrupts();
m_EE.m_State.nCOP0[CCOP_SCU::COUNT] += ticks;
m_timer.Count(ticks);
}
void CSubSystem::NotifyVBlankStart()
{
m_intc.AssertLine(CINTC::INTC_LINE_VBLANK_START);
}
void CSubSystem::NotifyVBlankEnd()
{
m_intc.AssertLine(CINTC::INTC_LINE_VBLANK_END);
}
void CSubSystem::SaveState(Framework::CZipArchiveWriter& archive)
{
archive.InsertFile(new CMemoryStateFile(STATE_EE, &m_EE.m_State, sizeof(MIPSSTATE)));
archive.InsertFile(new CMemoryStateFile(STATE_VU0, &m_VU0.m_State, sizeof(MIPSSTATE)));
archive.InsertFile(new CMemoryStateFile(STATE_VU1, &m_VU1.m_State, sizeof(MIPSSTATE)));
archive.InsertFile(new CMemoryStateFile(STATE_RAM, m_ram, PS2::EE_RAM_SIZE));
archive.InsertFile(new CMemoryStateFile(STATE_SPR, m_spr, PS2::EE_SPR_SIZE));
archive.InsertFile(new CMemoryStateFile(STATE_VUMEM0, m_vuMem0, PS2::VUMEM0SIZE));
archive.InsertFile(new CMemoryStateFile(STATE_MICROMEM0, m_microMem0, PS2::MICROMEM0SIZE));
archive.InsertFile(new CMemoryStateFile(STATE_VUMEM1, m_vuMem1, PS2::VUMEM1SIZE));
archive.InsertFile(new CMemoryStateFile(STATE_MICROMEM1, m_microMem1, PS2::MICROMEM1SIZE));
m_dmac.SaveState(archive);
m_intc.SaveState(archive);
m_sif.SaveState(archive);
m_vif.SaveState(archive);
m_timer.SaveState(archive);
}
void CSubSystem::LoadState(Framework::CZipArchiveReader& archive)
{
archive.BeginReadFile(STATE_EE )->Read(&m_EE.m_State, sizeof(MIPSSTATE));
archive.BeginReadFile(STATE_VU0 )->Read(&m_VU0.m_State, sizeof(MIPSSTATE));
archive.BeginReadFile(STATE_VU1 )->Read(&m_VU1.m_State, sizeof(MIPSSTATE));
archive.BeginReadFile(STATE_RAM )->Read(m_ram, PS2::EE_RAM_SIZE);
archive.BeginReadFile(STATE_SPR )->Read(m_spr, PS2::EE_SPR_SIZE);
archive.BeginReadFile(STATE_VUMEM0 )->Read(m_vuMem0, PS2::VUMEM0SIZE);
archive.BeginReadFile(STATE_MICROMEM0 )->Read(m_microMem0, PS2::MICROMEM0SIZE);
archive.BeginReadFile(STATE_VUMEM1 )->Read(m_vuMem1, PS2::VUMEM1SIZE);
archive.BeginReadFile(STATE_MICROMEM1 )->Read(m_microMem1, PS2::MICROMEM1SIZE);
m_dmac.LoadState(archive);
m_intc.LoadState(archive);
m_sif.LoadState(archive);
m_vif.LoadState(archive);
m_timer.LoadState(archive);
m_executor.Reset();
}
uint32 CSubSystem::IOPortReadHandler(uint32 nAddress)
{
uint32 nReturn = 0;
if(nAddress >= 0x10000000 && nAddress <= 0x1000183F)
{
nReturn = m_timer.GetRegister(nAddress);
}
else if(nAddress >= 0x10002000 && nAddress <= 0x1000203F)
{
nReturn = m_ipu.GetRegister(nAddress);
}
else if(nAddress >= CGIF::REGS_START && nAddress < CGIF::REGS_END)
{
nReturn = m_gif.GetRegister(nAddress);
}
else if(nAddress >= CVIF::REGS_START && nAddress < CVIF::REGS_END)
{
nReturn = m_vif.GetRegister(nAddress);
}
else if(nAddress >= 0x10008000 && nAddress <= 0x1000EFFC)
{
nReturn = m_dmac.GetRegister(nAddress);
}
else if(nAddress >= 0x1000F000 && nAddress <= 0x1000F01C)
{
nReturn = m_intc.GetRegister(nAddress);
}
else if(nAddress >= 0x1000F520 && nAddress <= 0x1000F59C)
{
nReturn = m_dmac.GetRegister(nAddress);
}
else if(nAddress >= 0x12000000 && nAddress <= 0x1200108C)
{
if(m_gs != NULL)
{
nReturn = m_gs->ReadPrivRegister(nAddress);
}
}
else
{
printf("PS2VM: Read an unhandled IO port (0x%0.8X).\r\n", nAddress);
}
return nReturn;
}
uint32 CSubSystem::IOPortWriteHandler(uint32 nAddress, uint32 nData)
{
if(nAddress >= 0x10000000 && nAddress <= 0x1000183F)
{
m_timer.SetRegister(nAddress, nData);
}
else if(nAddress >= 0x10002000 && nAddress <= 0x1000203F)
{
m_ipu.SetRegister(nAddress, nData);
ExecuteIpu();
}
else if(nAddress >= CGIF::REGS_START && nAddress < CGIF::REGS_END)
{
m_gif.SetRegister(nAddress, nData);
}
else if(nAddress >= CVIF::REGS_START && nAddress < CVIF::REGS_END)
{
m_vif.SetRegister(nAddress, nData);
}
else if(nAddress >= 0x10007000 && nAddress <= 0x1000702F)
{
m_ipu.SetRegister(nAddress, nData);
ExecuteIpu();
}
else if(nAddress >= 0x10008000 && nAddress <= 0x1000EFFC)
{
m_dmac.SetRegister(nAddress, nData);
ExecuteIpu();
}
else if(nAddress >= 0x1000F000 && nAddress <= 0x1000F01C)
{
m_intc.SetRegister(nAddress, nData);
}
else if(nAddress == 0x1000F180)
{
//stdout data
throw std::runtime_error("Not implemented.");
// m_sif.GetFileIO()->Write(1, 1, &nData);
}
else if(nAddress >= 0x1000F520 && nAddress <= 0x1000F59C)
{
m_dmac.SetRegister(nAddress, nData);
}
else if(nAddress >= 0x12000000 && nAddress <= 0x1200108C)
{
if(m_gs != NULL)
{
m_gs->WritePrivRegister(nAddress, nData);
}
}
else
{
printf("PS2VM: Wrote to an unhandled IO port (0x%0.8X, 0x%0.8X, PC: 0x%0.8X).\r\n", nAddress, nData, m_EE.m_State.nPC);
}
return 0;
}
uint32 CSubSystem::Vu0IoPortReadHandler(uint32 address)
{
uint32 result = 0;
switch(address)
{
case CVIF::VU_ITOP:
result = m_vif.GetITop0();
break;
default:
CLog::GetInstance().Print(LOG_NAME, "Read an unhandled VU0 IO port (0x%0.8X).\r\n", address);
break;
}
return result;
}
uint32 CSubSystem::Vu0IoPortWriteHandler(uint32 address, uint32 value)
{
switch(address)
{
default:
CLog::GetInstance().Print(LOG_NAME, "Wrote an unhandled VU0 IO port (0x%0.8X, 0x%0.8X).\r\n",
address, value);
break;
}
return 0;
}
uint32 CSubSystem::Vu1IoPortReadHandler(uint32 address)
{
uint32 result = 0xCCCCCCCC;
switch(address)
{
case CVIF::VU_ITOP:
result = m_vif.GetITop1();
break;
case CVIF::VU_TOP:
result = m_vif.GetTop1();
break;
default:
CLog::GetInstance().Print(LOG_NAME, "Read an unhandled VU1 IO port (0x%0.8X).\r\n", address);
break;
}
return result;
}
uint32 CSubSystem::Vu1IoPortWriteHandler(uint32 address, uint32 value)
{
switch(address)
{
case CVIF::VU_XGKICK:
m_vif.ProcessXGKICK(value);
break;
default:
CLog::GetInstance().Print(LOG_NAME, "Wrote an unhandled VU1 IO port (0x%0.8X, 0x%0.8X).\r\n",
address, value);
break;
}
return 0;
}
void CSubSystem::EEMemWriteHandler(uint32 nAddress)
{
if(nAddress < PS2::EE_RAM_SIZE)
{
//Check if the block we're about to invalidate is the same
//as the one we're executing in
CBasicBlock* block = m_executor.FindBlockAt(nAddress);
if(block)
{
if(m_executor.FindBlockAt(m_EE.m_State.nPC) != block)
{
m_executor.DeleteBlock(block);
}
else
{
#ifdef _DEBUG
printf("PS2VM: Warning. Writing to the same cache block as the one we're currently executing in. PC: 0x%0.8X\r\n", m_EE.m_State.nPC);
#endif
}
}
}
}
void CSubSystem::ExecuteIpu()
{
m_dmac.ResumeDMA4();
while(m_ipu.WillExecuteCommand())
{
m_ipu.ExecuteCommand();
2015-01-19 03:31:09 -05:00
if(m_ipu.HasPendingOUTFIFOData())
{
break;
}
if(m_ipu.WillExecuteCommand() && m_dmac.IsDMA4Started())
{
m_dmac.ResumeDMA4();
}
else
{
break;
}
}
}
void CSubSystem::CheckPendingInterrupts()
{
if(!m_EE.m_State.nHasException)
{
if(
m_intc.IsInterruptPending()
#ifdef DEBUGGER_INCLUDED
// && !m_singleStepEe
&& !m_executor.MustBreak()
#endif
)
{
m_os->HandleInterrupt();
}
}
}
void CSubSystem::FlushInstructionCache()
{
m_executor.Reset();
}
void CSubSystem::LoadBIOS()
{
Framework::CStdStream BiosStream(fopen("./vfs/rom0/scph10000.bin", "rb"));
BiosStream.Read(m_bios, PS2::EE_BIOS_SIZE);
}
void CSubSystem::FillFakeIopRam()
{
struct IOPMODINFO
{
uint32 nextPtr;
uint32 namePtr;
uint16 version;
uint16 newFlags;
uint16 id;
uint16 flags;
uint32 entry;
uint32 gp;
uint32 textStart;
uint32 textSize;
uint32 dataSize;
uint32 bssSize;
uint32 unused1;
uint32 unused2;
};
IOPMODINFO* moduleInfo = reinterpret_cast<IOPMODINFO*>(m_fakeIopRam + 0x800);
moduleInfo->nextPtr = 0x0;
moduleInfo->namePtr = 0xC00;
strcpy(reinterpret_cast<char*>(m_fakeIopRam + 0xC00), "sio2man");
}